首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the first part of this study, a series of stress-controlled hollow cylinder cyclic torsional triaxial shear tests were conducted on loose to medium dense saturated samples of clean Toyoura sand to investigate its liquefaction behavior. A uniform cyclic sinusoidal loading at a 0.1 Hz frequency was applied to air-pluviated samples where confining pressure and relative density was varied. Cyclic shear stress–strain changes, the number of cycles to reach liquefaction and pore pressure variations were recorded. Results indicate that the liquefaction resistances of uniform sands are significantly affected by the method of sample preparation and initial conditions.  相似文献   

2.
Pore water pressure generation during earthquake shaking initiates liquefaction and affects the shear strength, shear stiffness, deformation, and settlement characteristics of soil deposits. The effect of plastic fines (kaolinite) on pore pressure generation in saturated sands was studied through strain-controlled cyclic triaxial tests. In addition to pore pressure generation, this experimental study also focused on evaluating the threshold shear strain for pore pressure generation and the volumetric compressibility of specimens during pore pressure dissipation. The results reveal that specimens having up to 20% plastic fines content generated larger values of pore water pressure than clean sand specimens. At 30% fines content, the excess pore water pressure decreased below that of clean sand. The threshold shear strain, which indicates the strain level above which pore pressures begin to generate, was assessed for different kaolinite–sand mixtures. The threshold shear strain was similar for 0–20% fines (γt0.006–0.008%), but increased to about 0.025% for 30% fines. The volumetric compressibility, measured after pore pressure generation, was similar for all specimens. The transition of behavior at fines contents between 20% and 30% can be attributed to a change in the soil structure from one dominated by sand grains to one dominated by fines.  相似文献   

3.
The mechanical response to cyclic loading of saturated cohesionless soils is usually investigated by means of effective stress method considering pore water pressure changes that lead to reduced strength and stiffness. On the other hand, the behavior of partially saturated sands is different from the behavior of saturated sand deposits. The development of negative pore water pressures in particular makes it difficult to estimate the behavior of partially saturated sands. The response of partially saturated sands, however, can be examined in a physically understandable manner by investigating their energy characteristics independently of pore pressure behavior. To establish a general framework for understanding the behavior of partially saturated sand, a total of 52 resonant column and dynamic torsional shear tests were conducted under undrained conditions. The effects of factors such as the amplitude of shear strain, relative density, saturation ratio and confining pressure on the dynamic characteristics of the sand and on energy dissipation were studied. The use of the energy concept in the evaluation of partially saturated soils is shown to be a promising method for the evaluation of the cyclic behavior of partially saturated sands.  相似文献   

4.
Bender element (BE) tests of saturated sand have increased interest to researchers currently. However, the measurement of small strain modulus from BE tests shows large difference between saturated and dry conditions. In this study, BE tests of a type of clean sand (Fujian sand) and two types of natural sands (Hangzhou sand and Nanjing sand) were performed. For the purposes of comparison, resonant column (RC) test and torsional shear (TS) test were also carried out on the same specimen. The factors that influence the determination of the travel time of shear wave in BE tests are discussed and a reliable method for the determination of the shear-wave velocity is obtained. It is found that the shear-wave velocities Vs of saturated Fujian sand (clean sand) and Hangzhou sand (natural sand) obtained from BE tests are 5–10% greater than those obtained from RC and TS tests. However, the Vs of saturated Nanjing sand (natural sand) obtained from BE, RC and TS tests show good agreement with a maximum difference of about 3%. Sands with various fines contents were also tested in an attempt to explain the differences between the two saturated natural sands. Biot׳s theory accounting for the dispersion of shear wave was employed to interpret the results of BE tests. The results indicate that the fines content of natural sand plays an important effect on the hydraulic conductivity, which affects the relative motion between soil particles and fluid when a high frequency shear wave propagates in the specimen. Based on this, a method for the determination of small strain shear modulus in BE test was proposed for both saturated clean sands and natural sands.  相似文献   

5.
Laboratory cyclic triaxial tests were performed to investigate the effect of fine content on the pore pressure generation in sand. Strain-controlled, consolidated undrained tests have been performed with a cyclic shear strain range of 0·015-1·5%. These tests were carried to 1000 cycles or to initial liquefaction, which ever occurred first. Triaxial tests were performed on pure sand silt specimens and specimens with silt additions of 10, 20, 30, and 60% by weight. Two types of silt, a non-plastic silt and a low plasticity silt (PI 10) were used as control materials. The main parameters varied in this study were the amount of silt, the plasticity index of silt, and the void ratio where the observed parameter was the pore pressure generation. For all silt contents, silt plasticity and the number of loading cycles have no significant effect at strain levels below 0·01%. Therefore, threshold strain for silty sands have approximately the same value as sands. For both non-plastic and low plasticity silts, there is a significant increase in the generated pore pressure at high strain levels.  相似文献   

6.
Softening and strength loss of sands with increasing excess pore water pressure under repeated loads is well-known. However, extensive damage to the built environment also occurs at the sites underlain by fine grained soils during seismic shaking. The primary objective of this study is to investigate the factors affecting cyclic behavior of saturated low-plastic silt through laboratory testing. For this purpose, an extensive laboratory testing program including conventional monotonic and cyclic triaxial tests was carried out over reconstituted silt samples. The effects of the inherent soil properties and the effects of loading characteristics on the cyclic response of saturated low-plastic reconstituted silt samples were examined separately. Based on the test results, a model was introduced to estimate the effect of initial shear stress on the cyclic response. Besides, liquefaction susceptibility of the samples was examined via current liquefaction susceptibility criteria.  相似文献   

7.
8.
利用新研制的土工静力-动力液压三轴-扭转多功能剪切仪,在5种初始主应力方向角与5种中主应力系数相组合的初始固结条件下,对饱和松砂进行了不排水循环扭剪试验。讨论了初始固结条件对不排水条件下饱和松砂孔隙水压力变化规律及对剪胀、剪缩、卸荷体缩等体积变化过程的影响。试验研究表明:(1)分别以稳定残余孔隙水压力和破坏时循环次数归一化后的残余孔隙水压力比和循环次数比之间的关系可以用双曲线模式表达。其参数主要依赖于初始主应力方向,中主应力系数对参数的影响并不显著。归一化后的孔隙水压力比与广义剪应变之间的关系也可以用双曲线模式表达,其中的2个待定参数依赖于初始主应力方向,与中主应力系数无关;(2)在三向非均等固结条件下的不排水循环扭剪试验中,饱和松砂表现出卸荷体缩特性,不同初始主应力方向时,饱和松砂剪缩、剪胀、卸荷体缩呈现出不同的交替变化模式。  相似文献   

9.
黄河三角洲粉土液化的试验研究   总被引:2,自引:0,他引:2  
在野外自然地理和地质调查的基础上,以黄河地区可液化场地粉土为研究对象,利用室内动三轴和振动柱试验进行测定,分析了动荷载作用下粉土的动应力应变关系并模拟了地震荷载作用下粉土的孔压响应及抗液化强度,得出了液化破坏标准,提出了原状粉土的振动孔压上升模型。对试验结果进行分析发现,随着粘粒含量的增加,粉砂、粉土、粉质粘土、粘土达到相同剪应变所需的动剪应力也依次增加;粉土孔压比0.68、粉砂土孔压比0.87作为液化破坏开始的标志;粉土发生液化所需的循环应力比大于砂土。这些研究为以后建立适合本地区的饱和地基土地震破坏判别方法提供了参数和依据。  相似文献   

10.
复杂应力条件下饱和松砂单调与循环剪切特性的比较研究   总被引:4,自引:0,他引:4  
本文利用大连理工大学新引进与开发的“土工静力-动力液压-三轴扭转多功能剪切仪”,针对福建标准砂,在不排水条件下同时进行了单调剪切试验与循环剪切试验,进而对其进行了对比分析。通过比较表明,应力-应变关系的应变软化和硬化特性与流滑变形和循环流动特性密切相关,当循环剪切应力水平高于单调剪切过程中应变软化阶段最小强度时将会发生流滑变形。无论在单调剪切中,还是在循环剪切中,稳定状态时的有效偏应力比随着大主应力方向与竖向之间夹角的增大而减小,在中主应力系数相同的条件下,循环剪切中呈现显著剪胀时的有效偏应力比和最终稳定状态时的有效偏应力比峰值分别与单调剪切中达到相变状态时的有效偏应力比和最终稳定有效偏应力比基本上一致。然而不排水条件下单调与循环剪切过程中孔隙水压力的增长特性却并不相同,循环剪切中的最大孔隙水压力随着初始主应力方向角的增大而减小,单调剪切中的最大孔隙水压力却随着主应力方向角的增大而增大。  相似文献   

11.
《国际泥沙研究》2022,37(6):847-856
Laboratory flume experiments were conducted to quantify the effects of the soil characteristics on the critical shear stress of low fines content soil samples collected from the Montauk shores in New York. The collected soils were reconstituted at five different fines contents, ranging between 0 and 20%. These soil mixtures were composed of two initial water contents, dry of optimum and optimum moistures, and two relative densities, one moderate dense and the other dense. The strength indices of the soils, including the effective cohesion and effective angle of internal friction, were measured using the consolidated undrained (CU) triaxial test. The initiation of erosion tests was conducted on the soil mixtures under a unidirectional steady current condition. The near-bed flow velocity, at the onset of erosion, was used to determine the critical velocity and shear stress for each soil sample. The results indicate that the critical shear stress increases with the fines content and effective cohesion. The soils with the optimum initial water contents demonstrate a higher erosion resistance than those with the initial water contents dry of optimum. The higher relative density appears to overshadow the effects of the fines content such that the critical shear stress of the denser soils remains relatively insensitive to the soil composition. The denser soils compacted at the optimum initial water content show the highest resistance against erosion. The critical Shields parameter is modified to include the fines content, relative density, and initial water content.  相似文献   

12.
Presented in this paper are the results of the laboratory tests of sands performed for the purpose of defining the characteristics of the dynamic shear stress-shear strain relationships. For this purpose, the transformation of the initial stress-strain characteristics of undrained saturated sands was investigated separately. These transformations take place under conditions of an increase in pore pressure under the effect of sufficiently intensive dynamic excitations. The process of occurrence and development of liquefaction was investigated simultaneously. The obtained results show that the transformation of the stress-strain relationships leads to intensive reduction in the initial dynamic characteristics of sands. At the moment of occurrence of initial liquefaction, for the selected strain, shear moduli are considerably reduced in respect to their initial values. These parameters tend to be further reduced in the phase of post-initial liquefaction. It is concluded that the process of liquefaction of sands can be completely defined through the transformation of the stress-strain relationships.  相似文献   

13.
In this study, cyclic hollow cylinder torsional tests were conducted on the reconstituted specimens of Toyoura sand in a practical range of initial density and stress states. The results were employed to evaluate the liquefaction resistance and residual pore water pressure of sand using the strain energy concept. A simple pore water pressure (PWP) model with two calibration parameters was developed for the prediction of residual pore pressure as a function of cumulative strain energy density and the capacity energy of sand. Capacity energy is defined as the cumulative strain energy that is required for liquefaction onset. Based on the results of the tests, an equation is then presented for the estimation of capacity energy in terms of relative density and initial effective confining pressure of sand. This equation is shown to work well as a state boundary curve, which can discriminate between the liquefied and non-liquefied field case histories. Several extra tests were also performed to investigate the effect of initial static shear stress on the proposed PWP model and capacity energy. The results show that initial shear stress has a minor effect on the trend of the proposed PWP model; however, it definitely affects the capacity energy. The final part of the paper aims to confirm reasonable performance of the proposed PWP model by the available observations of seismically induced pore water pressure in shaking table, centrifuge, and real site conditions.  相似文献   

14.
Torsional resonant column and bender element tests were conducted on microfine and ordinary cement grouted sands and the effects of confining pressure, shear strain, grout water-to-cement (W/C) ratio, cement type and gradation on the dynamic properties were evaluated. The shear and initial Young's moduli of the grouted sands increased with increasing confining pressure and decreasing shear strain, while damping ratio had the opposite behavior. The grout W/C ratio had the strongest effect on the values of the dynamic properties of the grouted sands, followed by cement grain size and cement pozzolan content. Depending on grout W/C ratio and confining pressure, the shear and initial Young's moduli values and the damping ratio values of the clean sands were improved by a factor of 4–25 and 2–6, respectively. The effect of testing conditions or material parameters on the Poisson ratio values of the grouted sands was negligible.  相似文献   

15.
Assessing liquefaction potential, in situ screening using cone penetration resistance, and liquefaction-remediation of non-plastic silty soils are difficult problems. Presence of silt particles among the sand grains in silty soils alter the moduli, shear strength, and flow characteristics of silty soils compared to clean host sand at the same global void ratio. Cyclic resistance (CRR) and normalized cone penetration resistance (qc1N) are each affected by silt content in a different way. Therefore, a unique correlation between cyclic resistance and cone resistance is not possible for sands and silty sands. Likewise, the response of silty soils subjected to traditional deep dynamic compaction (DC) and vibro-stone column (SC) densification techniques is influenced by the presence of silt particles, compared to the response in sand. Silty soils require drainage-modifications to make them amenable for dynamic densification techniques. The first part of this paper addresses the effects of silt content on cyclic resistance CRR, hydraulic conductivity k, and coefficient of consolidation Cv of silty soils compared to clean sand. The second part of the paper assesses the effectiveness of equivalent intergranular void ratio (ec)eq concept to approximately account for the effects of silt content on CRR. The third part of the paper explores the combined effects of silt content (viz effects of (ec)eq, k, and Cv) on qc1N using laboratory model cone tests and preliminary numerical simulation experiments. A possible inter-relationship between qc1N, CRR, accommodating the different degrees of influence of (ec)eq, k, and Cv on qc1N and CRR, is discussed. The fourth part of the paper focuses on the detrimental effects of silt content on the effectiveness of DC and SC techniques to densify silty soils for liquefaction-mitigation. Finally, the effectiveness of supplemental wick drains to aid drainage and facilitate densification and liquefaction mitigation of silty sands using DC and SC techniques is discussed.  相似文献   

16.
The results of an experimental investigation on sands with low plastic fines content are presented. Specimens with a low plastic fines content of 0%, 15%, 30%, 40%, 50% and 60% by weight were tested in drained and undrained triaxial compression tests. The soil specimens were tested under three different categories: (1) at a constant void ratio index; (2) at the same peak deviator stress in a triaxial test; and (3) at a constant relative density. By a combination with our published experimental data in recent years, the critical state line and various state parameters have been proposed and discussed for a further understanding the behavior of sand–fines mixtures. Results indicated that a unique critical line was obtained from drained and undrained triaxial compression tests for each fines content. The effects of fines content on critical state line (CSL) were recognized and discussed. In addition, the results revealed that normalized peak undrained shear stress, cyclic resistance ratio, and compression index were found to be a good correlation with state parameter Ψ as well as equivalent state parameter Ψ*. An increasing state parameter decreased the normalized peak undrained shear stress, and cyclic resistance ratio; however, the compression index increased with an increase in state parameter. Finally, there were no correlations such as the coefficient of consolidation–state parameter and maximum shear modulus–state parameter due to the different testing condition.  相似文献   

17.
以片状颗粒成分为主的片状结构砂与常用的圆形颗粒标准石英砂相比,在物理力学特性上有显著的差异。循环荷载作用下,饱和砂土振动孔压上升会导致土体刚度发生软化,当振动孔压累积达到一定水平时,会产生液化现象,从而引起土体结构发生破坏。采用英国WFI动三轴仪,研究了南京片状细砂在循环荷载作用下,静偏应力水平、循环应力比水平和循环次数对其动应力一应变关系的影响,考虑每一次循环过程中动应力—应变关系滞回曲线的卸载及再加载割线动剪切模量Gsec和最大割线模量Gmax的变化特性,建立了动剪模量软化的经验公式;静偏应力水平对动剪模量软化有显著影响,随着循环次数的增加,动应力—应变滞回圈逐渐向应变累积方向滑移和向应变轴方向倾斜,且彼此分离;考虑循环软化特性,采用修正的Masing准则,描述了循环荷载下南京片状细砂的动应力—应变关系。  相似文献   

18.
前人曾指出液化后伴随着超孔隙水压重新分配的渗透会引起流体破坏的可能性。为了研究这一现象,利用实验室三轴试验将孔隙水注入土壤检测了土壤的渗透剪切破坏。该实验是在各项异性的固结作用后保持差应力,使用孔隙水控制装置在体积不变的应变控制条件下将孔隙水注入。实验中所用的材料是在1995年神户地震时被液化的常规洁净细砂和风化的花岗岩土壤。本文以实验结果为基础,讨论了由孔隙水注入引起的渗透剪切破坏判据和导致后液化行为的剪切应变发展特征。  相似文献   

19.
主应力轴持续旋转条件下饱和松砂的振动孔隙水压力特性   总被引:2,自引:0,他引:2  
利用新研制的“土工静力-动力液压三轴-扭剪多功能剪切仪”,针对福建标准松砂,在三向非均等固结条件下,进行了能够模拟海洋波浪荷载作用下主应力轴连续旋转的循环耦合剪切试验。通过试验着重探讨了初始主应力方向、振动过程中主应力方向连续变化对不排水条件下砂土的振动孔隙水压力增长特性的影响。实验研究表明:在振动过程中主应力轴连续旋转的条件下,初始主应力方向对砂土的动孔压比与振次比之间关系具有显著的影响,随着初始大主应力与竖向之间夹角的增大,动孔压比的增长速度明显加快,具有较好的规律性;归一化孔压比与广义剪应变之间的关系基本上与初始主应力方向角和振动剪应力幅值无关。  相似文献   

20.
波浪荷载能引起海床土体的主应力轴连续旋转。不同于地震、交通等循环荷载,在周期性波浪荷载作用的土体应力路径方式下,软黏土的软化效用更为明显。本文分别对天然和扰动的海床土体在波浪荷载作用下的应力响应进行模拟,并分析应力路径的特点;为描述软化后的应力-应变关系,将软化效用和累积塑性应变的参数引入到能够反应土体动力非线性的Hardin-Drnevich模型中,建立修正模型,使之能够反应软黏土体软化与塑性应变累计特性;通过与模拟波浪荷载下土体应力特征的循环耦合试验结果进行对比分析,验证该修正模型的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号