首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A proper assessment of seismic hazard is of considerable importance in order to achieve suitable building construction criteria. This paper presents probabilistic seismic hazard assessment in and around Pakistan (23° N–39° N; 59° E–80° E) in terms of peak ground acceleration (PGA). Ground motion is calculated in terms of PGA for a return period of 475 years using a seismogenic-free zone method of Gumbel’s first asymptotic distribution of extreme values and Monte Carlo simulation. Appropriate attenuation relations of universal and local types have been used in this study. The results show that for many parts of Pakistan, the expected seismic hazard is relatively comparable with the level specified in the existing PGA maps.  相似文献   

2.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   

3.
The seismic zoning map of Turkey that is used in connection with the national seismic design code (versions issued both in 1997 and 2007) is based on a probabilistic seismic hazard assessment study conducted more than 20 years ago (Gülkan et al. in En son verilere göre haz?rlanan Türkiye deprem bölgeleri haritas?, Report No: METU/EERC 93-1, 1993). In line with the efforts for the update of the seismic design code, the need aroused for an updated seismic hazard map, incorporating recent data and state-of-the-art methodologies and providing ground motion parameters required for the construction of the design spectra stipulated by the new Turkish Earthquake Design Code. Supported by AFAD (Disaster and Emergency Management Authority of Turkey), a project has been conducted for the country scale assessment of the seismic hazard by probabilistic methods. The present paper describes the probabilistic seismic hazard assessment study conducted in connection with this project, incorporating in an area source model, all recently compiled data on seismicity and active faulting, and using a set of recently developed ground motion prediction equations, for both active shallow crustal and subduction regimes, evaluated as adequately representing the ground motion characteristics in the region. The area sources delineated in the model are fully parameterized in terms of maximum magnitude, depth distribution, predominant strike and dip angles and mechanism of possible ruptures. Resulting ground motion distributions are quantified and presented for PGA and 5 % damped spectral accelerations at T = 0.2 and 1.0 s, associated with return periods of 475 and 2475 years. The full set of seismic hazard curves was also made available for the hazard computation sites. The second part of the study, which is based on a fault source and smoothed seismicity model is covered in Demircioglu et al. in Bull Earthq Eng, (2016).  相似文献   

4.
Izmir, the third largest city and one of the major economic centers in Turkey, has more than three million residents and one-half million buildings. The city, located in a seismically active region in western Anatolia, was a subject of the 1997 RADIUS (Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disaster) project. In this paper, the seismic hazard of Izmir is investigated through probabilistic seismic hazard assessment. First, the seismic setting of Izmir is presented. Considering the statistics of earthquakes that took place in the region during the period 1900–2005, a simple seismic hazard model is used to facilitate the assessment. To account for modeling uncertainties associated with the values of seismicity parameters, a logic tree procedure is employed in carrying out the seismic hazard computations. The resulting weighted average seismic hazard, presented in terms of peak ground acceleration and associated probability of exceedence, could be considered the “best estimate” of seismic hazard for Izmir. Accordingly, for a return period of 475 years, for rock sites, a PGA value of 0.34 g is calculated. This PGA hazard estimate is close to the current code-recommended design acceleration level for Izmir.  相似文献   

5.
Estimation of ground-motion amplitudes of different hazard levels is of paramount importance in planning of urban development of any metropolis. Such estimation can be computed through a probabilistic seismic hazard analysis (PSHA). This paper concentrates on the PSHA of an area located in Shiraz city, southern Iran. The area includes whole of Shiraz city (i.e., one of the largest and most populous cities of Iran) and its outskirts. Conventional and Monte Carlo simulation-based approaches are utilized to perform the PSHA of the studied area. Two areal seismic source models are delineated, and thence seismicity parameters of all zones associated with their corresponding uncertainties are computed. Uncertainties in ground-motion prediction are accounted for via three ground-motion prediction equations (GMPEs) within the logic tree framework. These GMPEs are applied to estimate bedrock ground shaking (Vs30?=?760 m/s) for several return periods (i.e., 75, 475, 975, and 2475 years). In general, the results of the two abovementioned PSHA approaches show relatively similar results. However, the Monte Carlo simulation-based approach overpredicts bedrock spectral accelerations at periods of 0.4–2.5 s compared to the conventional PSHA approach for return periods of 475, 975, and 2475 years.  相似文献   

6.
We present a ground motion prediction equation (GMPE) for probabilistic seismic hazard assessments (PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-West2 flat-file (Ancheta et al. in Earthquake Spectra 30:989–1005, 2014), we develop a model tailored to the hazard application in terms of data selection and implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral distance (along with the Joyner-Boore one), selecting recordings at sites with vs30 ≥ 360 m/s, distances within 300 km, and magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the target area). Moreover, the complexity of the considered functional form is reflecting the availability of information in the target area. The median predictions are compared with those from the NGA-West2 models and with one recent European model, using the Sammon’s map constructed for different scenarios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE median is of the order of those affecting the NGA-West2 models for the magnitude range of interest of the hazard application. On the other hand, the simplification of the functional form led to an increment of the apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its application in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not advised.  相似文献   

7.
Probabilistic earthquake hazard analysis for Cairo,Egypt   总被引:1,自引:1,他引:0  
Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region’s political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input’s element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1°?×?0.1 ° spacing for all of Cairo’s districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone’s districts (e.g., El Nozha) and the lowest values at the northern and western zone’s districts (e.g., El Sharabiya and El Khalifa).  相似文献   

8.
Over the years, several local and regional seismic hazard studies have been conducted for the estimation of the seismic hazard in Turkey using different statistical processing tools for instrumental and historical earthquake data and modeling the geologic and tectonic characteristics of the region. Recently developed techniques, increased knowledge and improved databases brought the necessity to review the national active fault database and the compiled earthquake catalogue for the development of a national earthquake hazard map. A national earthquake strategy and action plan were conceived and accordingly with the collaboration of the several institutions and expert researchers, the Revision of Turkish Seismic Hazard Map Project (UDAP-Ç-13-06) was initiated, and finalized at the end of 2014. The scope of the project was confined to the revision of current national seismic hazard map, using the state of the art technologies and knowledge of the active fault, earthquake database, and ground motion prediction equations. The following two seismic source zonation models are developed for the probabilistic earthquake hazard analysis: (1) Area source model, (2) Fault and spatial smoothing seismic source model (FSBCK). In this study, we focus on the development and the characterization of the Fault Source model, the background spatially smoothed seismicity model and intrinsic uncertainty on the earthquake occurrence-rates-estimation. Finally, PSHA results obtained from the fault and spatial smoothed seismic source model are presented for 43, 72, 475 and 2475 years return periods (corresponding to 69, 50, 10, and 2% probability of exceedance in 50 years) for PGA and 5% damped spectral accelerations at 0.2 and 1.0 s.  相似文献   

9.
Earthquakes trigger other earthquakes and build up clusters in space and time that in turn create a bias in seismic catalogues. Therefore, declustering is considered as a prerequisite in seismic studies, particularly for probabilistic seismic hazard analysis, not only to eliminate the bias but also to decouple mainshocks and triggered events. However, a declustering process is not a straightforward task due to the complex nature of earthquake phenomena. There exist several declustering methods that mostly employ subjective rules to distinguish between background seismicity and offsprings. Eventually, the final declustered catalogues usually deviate significantly according to the employed method. This issue is raising some concerns, such as how to select the most suitable declustering algorithm, or to assess how this selection affects seismic hazard assessment. In consequence, the main goal of this paper is to quantify the sensitivity of seismic hazard assessments to different declustering techniques. Accordingly, the recently compiled Turkish earthquake catalogue was declustered by making use of three declustering algorithms. A total of six declustered catalogues, two catalogues per method, one by implementing the default input parameters, and one by altering the free input parameters of the employed methods, were produced. The clusters of selected earthquakes were studied in terms of the spatial–temporal distribution of earthquake sequences. A sensitivity analysis was conducted through the major steps of seismic hazard assessment for Istanbul metropolitan city. The seismicity of Istanbul and surroundings was modeled on the basis of four areal source zones. Comparative studies showed that, while the selected declustering algorithm did not significantly affect the completeness periods of moderate to large size earthquakes, it considerably altered those of small magnitude events (e.g. Mw 4.3–5.2) and consequently the recurrence parameters of the source zones. Depending on the declustering algorithm and input parameters, the activity rate was observed to vary up to a factor of two. The differences in the declustered catalogues obtained from different declustering approaches resulted in considerable variations in seismic hazard estimations. The hazard maps at return periods of 475 and 2475 years indicated that peak ground acceleration values may vary up to 20% at some locations. Moreover, the differences in 5% damped elastic spectral accelerations at T = 0.2 for the return periods of 475 and 2475 years are about 18 and 12%, respectively, on the southern shores of Istanbul where the highest hazard levels are observed.  相似文献   

10.
We present the results of probabilistic seismic hazard assessment for Iceland in the framework of the EU project UPStrat-MAFA using the so-called site approach implemented in the SASHA computational code. This approach estimates seismic hazard in terms of macroseismic intensity by basically relying on local information about documented effects of past seismic events in the framework of a formally coherent and complete treatment of intensity data. In the case of Iceland, due to the lack of observed intensities for past earthquakes, local seismic histories were built using indirect macroseismic estimates deduced from epicentral information through an empirical attenuation relationship in probabilistic form. Seismic hazard was computed for four exceedance probabilities for an exposure time of 50 years, equivalent to average return periods of 50, 200, 475 and 975 years. For some localities, further return periods were examined and deaggregation analysis was performed. Results appear significantly different from previous seismic hazard maps, though just a semi-qualitative comparison is possible because of the different shaking measure considered (peak ground acceleration versus intensity), and the different computational methodology and input data used in these studies.  相似文献   

11.
In the present study, probabilistic seismic hazard assessment was conducted for Cyprus based on several new results: a new comprehensive earthquake catalog, seismic source models based on new research, and new attenuation relationships. Peak ground acceleration distributions obtained for a return period of 475 years for rock conditions indicate high hazard along the southern coastline of Cyprus, where the expected ground motion is between 0.3 and 0.4 g. The rest of the island is characterized by values representing less severe shaking. Results of this study strongly indicate the inadequacy of the Turkish Earthquake Code that is being used in the northern part of the island and the Eurocode 8 that is in effect in the southern part of the island to approximate the uniform hazard spectra developed for the high hazard and moderate hazard regions of the island.  相似文献   

12.
A seismic hazard assessment study of continental Ecuador is presented in this paper. The study begins with a revision of the available information on seismic events and the elaboration of a seismic catalog homogenized to magnitude Mw. Different seismic source definitions are revised and a new area-source model, based on geological and seismic data, is proposed. The available ground motion prediction equations for crustal and subduction sources are analyzed and selected for the tectonic environments observed in Ecuador. A probabilistic seismic hazard assessment approach is carried out to evaluate the exceedance probability of several levels of peak ground acceleration PGA and spectral accelerations SA (T) for periods (T) of 0.1, 0.2, 0.5, 1 and 2s. The resulting hazard maps for continental Ecuador are presented, together with the uniform hazard spectra of four province capital cities. Hazard disaggregation is carried out for target motions defined by the PGA values and SA (1s) expected for return periods of 475 and 2475 years, providing estimates for short-period and long-period controlling earthquakes.  相似文献   

13.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   

14.
Probabilistic seismic hazard analysis in Nepal   总被引:3,自引:0,他引:3  
The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitude 79° E and 90° E) from 1255 to 2011. The distribution of catalogued earthquakes, together with available geological and tectonic information were used to delineate twenty-three seismic source seismic source information and probabilistic earthquake hazard prediction relationship, peak ground accelerations (PGAs) have zones in Nepal and the surrounding region. By using the parameters in conjunction with a selected ground motion been calculated at bedrock level with 63%, 10%, and 2% probability of exceedance in 50 years. The estimated PGA values are in the range of 0.07-0.16 g, 0.21 0.62 g, and 0.38-1.1 g for 63%, 10%, and 2% probability of exceedance in 50 years, respectively. The resulting ground motion maps show different characteristics of PGA distribution, i.e., high hazard in the far-western and eastern sections, and low hazard in southern Nepal. The quantified PGA values at bedrock level provide information for microzonation studies in different parts of the country.  相似文献   

15.
The objectives of this paper are (1) to obtain estimates on the effect of uncertainties of the hazard model, and (2) to evaluate the seismic hazard in Taiwan for structural analysis and design purposes. The seismic hazard in the Taiwan area is presented in terms of an iso-acceleration map. Such a map is developed for return periods of peak ground acceleration of 225 years and 475 years. The contour map of b-values and mean occurence rates for this region is also presented. Uncertainty analyses of model parameters in hazard analysis are concentrated on the analysis of dispersion of PGA values and the probabilistic modeling of stationary and nonstationary Poisson models of occurrences. Th e overall results are considered to be conservative since for most uncertainty analyses the more conservative values are used.  相似文献   

16.
Ground-Motion Hazard Values for Northern Algeria   总被引:2,自引:0,他引:2  
This study examines distinctive features of ground motion parameters in northern Algeria. An initial computation of seismic hazard in terms of horizontal peak ground acceleration (PGA) and spectral acceleration (SA) at different periods, damped at 5%, is carried out for three different types of soils (rock, stiff soils and soft soils) for return periods of 100 and 475 years. In addition, uniform hazard spectra (UHS) are computed for these two return periods at several locations in the region. Then, the UHS computed for different soil types are proposed as a starting point to define elastic design spectra for building-code purposes. We have used the well-known Newmark-Hall approach. As proposed in the most recent International Building Codes, the SA (0.2 s) value is used to establish the spectral region for lower periods (region controlled by acceleration), whereas the SA (1.0 s) value is used to establish the spectral region for intermediate periods (region controlled by velocity). We also obtained important relations, dependent on site condition, between SA (0.2 s), SA (1.0 s) or SAmax values, and the PGA, for both return periods of 100 and 475 years. Other relationships between PGA or SAmax values have also been derived for return periods of 100 and 475 years, in this case independent of site condition.  相似文献   

17.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

18.
The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of \(v_{S30}\) = 800 m/s, are calculated for three hazard levels (10, 5 and 2% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02–3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.  相似文献   

19.
This article presents site-specific probable seismic hazard of the Himachal Pradesh province, situated in a seismically active region of northwest Himalaya, using the ground motion relations presented in a companion article. Seismic recurrence parameters for all the documented probable sources are established from an updated earthquake catalogue. The contour maps of probable spectral acceleration at 0, 0.2, and 1 s (5% damping) are presented for 475 and 2475 years return periods. Also, the hazard curves and uniform hazard response spectrums are presented for all the important cities in this province. Results indicate that the present codal provision underestimates the seismic hazard at cities of Bilaspur, Shimla, Hamirpur, Chamba, Mandi, and Solan. In addition, regions near Bilaspur and Chamba exhibit higher hazard levels than what is reported in literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号