首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SCMOC温度精细化指导预报在陕西区域的质量检验   总被引:1,自引:0,他引:1  
王丹  高红燕  马磊  王建鹏  杨新 《气象科技》2014,42(5):839-846
利用2012年陕西区域99站共366天北京时间08:00和20:00起报的SCMOC温度精细化指导预报与实况资料的比较,检验分析了定时温度、日最高气温和日最低气温的预报质量。结果表明:陕西区域SCMOC温度精细化指导预报08:00起报的准确率高于20:00起报的,且预报准确率有明显的季节变化,夏、秋季节较高,冬、春季节较低,日最高(低)气温的预报准确率与预报时效成反比。地形高度影响温度预报准确率,二者之间的相关系数通过了显著性检验。08:00起报的48h内逐3h气温多出现负误差,20:00起报的多出现正误差。08:00起报的日最高气温和20:00起报的日最高(低)气温多出现负误差,08:00起报的日最低气温多出现正误差。从对典型天气过程的温度预报质量检验来看,强冷空气影响下的降温天气过程的温度预报难度较大,预报准确率较其他天气类型偏低一些。  相似文献   

2.
利用山东省内123个国家气象站2017年11月至2018年2月逐时观测地面温度对WRF模式08:00和20:00起报的2 m温度进行检验,评估了预报时效为72 h的逐时温度与日最低(高)温度的预报效果并初步分析了个别站点大值误差成因。结果表明:WRF模式08:00起报2 m温度的准确率要高于20:00起报,白天预报的效果优于夜晚;鲁西北和半岛地区的2 m预报温度的平均绝对误差总体低于鲁中和鲁南地区,全省大部分站点负误差比例高于正误差比例;WRF模式对于日最高温度的预报效果优于日最低温度;模式地形高度误差造成泰山站2 m预报温度正误差较大,基于两种温度梯度方案对泰山站2 m温度进行订正,订正后的平均绝对误差总体下降,利用单一的温度梯度在有的预报时刻出现负的订正效果,利用随预报时刻变化而变化的温度梯度在各预报时刻订正效果更为稳定;泰安站出现焚风时2 m预报温度有较大负误差,这主要是受WRF模式泰山站地形高度误差影响;WRF模式在微山湖区域土地类型与真实土地类型存在差异是薛城站夜间2 m温度负误差较大的重要因素之一。  相似文献   

3.
依据ECMWF细网格模式2019—2020年20:00起报未来24-216h的0.05×0.05°分辨率格点日最高、最低温度和国家气象信息中心格点温度实况资料,采用“动态训练、择优选取”的基本原则,利用递减平均法(DAM)和径向基函数神经网络方法(RBFNN)对温度进行客观预报订正,并与中央台指导预报(NMC)和EC模式预报产品进行格点检验对比分析。结果表明:(1)通过DAM和RBFNN订正后的24—216h日最高、最低温度预报准确率提高3.9~7.8%,均为“正”技巧,对预报准确率偏低的月份预报时效订正效果更显著,且夏、秋季最高温度预报订正效果较好,冬季最低温度订正能力较强;(2)分区域预报检验来看,订正后的最高、最低温度预报产品除沙坡头区的最高温度预报和贺兰山的最低温度预报误差偏大外,其他区域的误差基本都小于2℃,特别是对强降温、寒潮天气的温度预报订正效果明显优于NMC和EC模式预报产品,对预报业务有一定的参考价值。  相似文献   

4.
利用EC模式对2017年沧州市14个国家基本站2m最高、最低温度的24、48、72h预报结果,采用预报准确率、平均误差、平均绝对误差和皮尔森相关系数等统计方法进行检验及订正。结果表明:EC模式对不同预报时效预报准确率,最高温度模式20时起报高于08时,最低温度08时起报高于20时;随着预报时效的延长,模式预报准确率逐渐下降。预报准确率最高温度区域差异不明显,月际变化大;最低温度区域差异显著,月际变化不均。EC模式对沧州温度的预报误差主要由系统误差造成,温度预报绝大多数的大值误差出现在转折性天气阶段,当出现明显升温和高温时,最高温度预报偏低更明显,出现明显降温时,最低温度预报偏高。对2018年1-4月EC模式预报最高、最低温度进行系统和大误差订正检验,发现订正后预报效果更好。  相似文献   

5.
利用滑动平均法和递减平均法对2013—2014年江西省1 216个乡镇站点ECMWF集合预报2 m温度集合平均产品进行误差订正试验。结果表明:1)滑动平均法和递减平均法对江西地区乡镇温度预报为正的订正效果,订正后的预报准确率大于订正前,并且递减平均法的订正效果要略优于滑动平均法。2)误差订正方法对各时段温度TRMSE的订正能力都随预报时效的增加而减小,对高温预报准确率的提高明显大于低温,对山区预报准确率的提高大于平原,对有规律的预报误差的站点订正效果较好。3)随季节和站点变化的自适应递减平均法的预报结果较各季节和全年定常最优订正系数好,订正方法对秋季温度预报订正能力最强,春季最差。  相似文献   

6.
基于中国气象局陆面数据同化系统(CLDAS-V2. 0)实时产品数据集中2 m气温数据对ECMWF高分辨率数值模式2 m气温预报产品在中国东北中北部的预报能力进行初步检验并利用递减平均法对系统性偏差进行订正。结果表明,气温平均预报准确率与海拔高度呈显著负相关,山区预报准确率偏低,系统性偏差较大。气温预报偏差还表现为明显的日变化特征,在夜间表现为预报较实况显著系统性偏高,白天系统性偏差不明显。冬季夜间气温,特别是最低气温系统性偏高的特征变得更加明显。递减平均法对系统性偏差的订正效果好,订正后,东北中北部地区冬季夜间气温及最低气温预报能力有大幅度提高。另外,递减平均法对东北中北部山区3、4及9月以外其他月份夜间气温及最低气温,对冬季白天气温及最高气温有显著的订正能力。  相似文献   

7.
王丹  王建鹏  白庆梅  高红燕 《气象》2019,45(9):1310-1321
基于ECMWF细网格模式的定时最高(低)气温预报产品,针对2017年陕西99个国家级气象站的日最高(低)气温预报,检验和比较了递减平均法和一元线性回归法两种方法对气温预报误差的订正效果。结果表明,两种方法都显著地提高了日最高(低)气温的预报准确率,随着预报时效的延长,订正能力逐渐减弱。技巧评分与模式对气温的预报能力有显著的负相关关系,秦岭及其以南地区的日最高气温预报和秦岭以北地区的日最低气温预报的准确率偏低,其技巧评分一般超过40%,极大值超过70%。两种方法都有效降低了系统误差,较小误差范围的站次增多,较大误差范围的站次减少,对日最高气温在预报绝对误差≤2℃误差范围的订正能力较为突出,对日最低气温在预报绝对误差≥3℃误差范围的订正更有优势。一元线性回归法对日最高气温预报的订正能力略优于递减平均法,对日最低气温预报的订正能力不及递减平均法,利用这两种方法对气温预报进行混合订正的效果更佳。  相似文献   

8.
为了解ECMWF高分辨率数值预报模式(以下简称"EC")对广安地区晴雨预报性能,分析订正方法,提高预报质量,对2015—2017年广安地区72 h内的EC晴雨预报进行预报性能检验。结果表明:72 h内EC晴雨预报准确率整体较高,空报率是影响预报准确率的主要因素;预报准确率夜间高于白天,空报率夜间低于白天,且随着时间的延长,准确率呈下降趋势,空报率呈上升趋势;漏报率低,且无明显的时效变化。根据订正指标进行订正预报,平均准确率为79.2%~84.0%,较未订正前上升5.3%~21.5%,具有较高的参考价值。  相似文献   

9.
针对镇江ECMWF模式168 h内高温(t≥35℃)预报结果提出四种后处理订正方案,包括一元线性回归法、差值法、综合法和递减平均法;借助均方根误差等四种检验方法就订正效果进行评估,找寻最优订正方案。结果表明,四种订正方法都明显改善了ECMWF模式高温预报,订正后的均方根误差、平均绝对误差及最大绝对误差较订正前均有所减小,预报准确率显著提高。对于24 h时效内预报,四种订正方法各有优势。对于48~168 h时效预报,一元线性回归法效果更优。采用分时效对ECMWF模式高温预报结果进行后处理,考虑24 h预报订正使用递减平均方法,48~168 h预报订正使用一元线性回归法,可以更大程度地提高预报准确率。  相似文献   

10.
利用2020年6月1日—2022年5月31日CMA GD模式2 m气温预报产品(预报时效为13—36 h)和同期江西省智能网格预报区域内地面站气温观测资料,计算气温预报准确率、平均误差和均方根误差,并统计分析其时空分布特征。结果表明: 1)模式预报准确率在不同月份、起报时次存在差异,暖季总体较高,冷季总体较低;暖季08时起报产品的月准确率总体高于20时,冷季反之;秋、冬季旬准确率分布更离散。模式预报产品其准确率明显低于中央气象台和江西省气象台订正产品,需订正后使用。08时起报产品对寒潮的预报效果优于20时。2)气温预报年误差分布存在日变化,最大值出现在08时,最小值出现在15时;年均方根误差峰值出现在15时和06时,白天大于夜间。3)冬季平均误差多为正值,夏季为负值,春、秋季平均误差大小界于冬、夏季之间;白天时段夏季均方根误差最大,夜间时段冬季最大。4)气温预报年误差地理分布特征明显,平原地区预报值偏低,年均方根误差最小;丘陵和山区22 h时效预报值偏高,31 h时效偏低;高山站预报值偏高,年均方根误差最大。丘陵地区负误差最大,平原地区最小;山区正误差最大。  相似文献   

11.
ECMWF高分辨率模式2 m温度预报误差订正方法研究   总被引:4,自引:1,他引:3  
薛谌彬  陈娴  张瑛  郑婧  马晓华  张雅斌  潘留杰 《气象》2019,45(6):831-842
文章提出了一种结合滑动双权重平均订正法和空间误差逐步订正法的综合订正技术,并对2016年5月1日至2017年5月1日期间24~168 h预报时效内欧洲中期天气预报中心(ECMWF)高分辨率模式的2 m最高和最低温度进行偏差订正和误差分析,主要结论如下:(1)ECMWF模式在江西省的温度预报整体上比实况偏低,最高温度尤为明显,模式温度的空间分布表现出显著的系统性偏差,且偏差在不同预报时效是稳定的,订正ECMWF模式温度具有可行性。(2)滑动双权重平均订正法中较长的滑动订正周期对模式温度预报有更好的订正效果,采用滑动订正周期20 d是比较理想的。滑动双权重平均订正法具有持续的订正能力,但在季节过渡期间订正效果可能并不理想,而空间误差逐步订正法能进一步提高滑动双权重平均订正法的预报订正质量。(3)温度预报准确率表明,滑动双权重平均订正法和空间误差逐步订正法综合订正技术较好地改善了站点温度的预报质量。经过订正后,模式最高温度24、48、72 h预报误差≤2℃的准确率分别从0.59、0.55、0.52提高到0.75、0.68、0.62,模式最低温度24、48、72 h预报准确率分别从0.84、0.83、0.82提高到0.89、0.87、0.85。订正后72 h最高和最低温度的预报准确率都大于订正前模式24 h的准确率。总体而言,该综合订正技术较好地订正了模式误差,且误差在空间分布上较均匀。(4)对于高山站而言,经过订正后的最高和最低温度与实况基本吻合。空间误差逐步订正法的订正量在±1℃之内,与滑动双权重平均订正后的偏差呈现一定的负相关,有正的订正效果。该综合订正法已成功运用于江西省精细化气象要素客观预报业务系统中。  相似文献   

12.
采用气候概率统计和多时效平均的思路,对2018—2019年的欧洲中期天气预报中心(ECWMF)高分辨率模式2 m温度产品在六盘水市的预报误差进行统计分析,并对采用指标订正后的2020年度模式预报准确率进行检验评估。结果表明:ECWMF高分辨率模式对六盘水市的温度预报误差随时效的增加而逐渐减小,且各时效平均的最高温度年均预报误差和误差标准差要明显高于最低温度;对于六盘水而言,模式的温度预报在初夏(6月)可靠性最高,而在春季(3—4月)最低;通过采用预报误差最大占比对逐月多时效平均的模式最低温度预报进行订正,以及根据天气类型采用不用订正方式与订正指标对模式24 h最高温度预报进行订正,能够大幅提升全市未来5 d(120 h)综合最低温度和24 h内的最高温度预报准确率,分别稳定在90%和70%以上;经过订正后,全市的2020年度平均最低温度预报准确率与实际相当,而24 h最高温度预报准确率要高于实际预报准确率。  相似文献   

13.
利用2016年春、夏季节陕西99个国家站的气温逐1 h观测数据,对ECMWF高分辨率数值模式对陕西国家站0~72 h逐3 h和78~240 h逐6 h的气温预报性能进行评估。结果表明,陕西大部分地区,气温预报误差≤1 ℃和≤2 ℃的准确率在72 h之前分别为30%~50%和55%~85%,96 h之后分别为10%~30%和25%~55%,夏季的准确率高于春季,20:00起报的准确率略高于08:00起报。随着预报时效的增加,模式的气温预报能力和稳定性波浪式下降,日变化特征明显,23:00至次日11:00时段的预报能力和稳定性好于14:00—20:00时段。模式的气温预报值与观测值有很好的相关性,但是模式和实际观测站的地形高度差异会对气温预报质量产生较大影响。基于气温垂直变率和模式与实际观测站的地形高度差异进行的高度差订正,可以适当提高模式的气温预报水平,文中提出的几种气温预报的高度差订正方法,对陕西大部分地区的气温预报为正订正效果,但还存在一些问题,有待进一步研究。  相似文献   

14.
使用"递减平均法"和渤海28个石油、平台、浮标站资料分析得到的渤海10m风速逐时格点场,对ROAD模式(Regional Ocean and Atmosphere Model)渤海区域10m风速预报进行误差订正,不同权重系数试验表明:对于渤海10m风速预报场,权重系数取0.18,订正效果最佳,12~72h预报时效内,月逐时均方根误差和平均偏差均有明显改善,分别减小1.0~1.5m/s和2.3~3.0m/s;对比渤海北部、西部和中部代表格点72h预报时效内,逐12h最大风速评分结果发现:60h预报时效内,当风速预报在5~6级时,渤海北部、中部和西部订正后的预报评分大多有所提高;当风速预报在7级时,渤海北部和中部分别在36~72h和24~48h,预报评分有提高;在实况出现最多的风力分布范围内评分提高最多。  相似文献   

15.
基于2019年8月至2020年7月华南区域模式(CMA-GD)预报和湖南97个国家站2m温度实况,开展了模式温度预报检验和逐步回归订正技术研究。结果表明,华南区域模式2m温度预报与实况变化趋势基本一致,预报偏差具有明显日变化,白天准确率下降、夜间升高,随着预报时效的延长,偏差增大;夏半年预报偏差大于冬半年;湘西预报效果优于湘东;00时起报的2m温度预报优于12时起报。基于华南区域模式预报产品,区分起报时次和季节的2m温度预报逐步回归订正预报效果较好,订正后预报相对于模式预报误差下降、准确率提高,有明显正技巧,对12时起报的模式预报效果改善更大,不同站点订正效果略有差异,对预报误差较大站点,订正效果明显。  相似文献   

16.
《干旱气象》2021,39(4)
利用陕西99个国家气象站2017—2019年日最高(低)气温观测资料,采用一元线性回归和递减平均方法,对GRAPES_Meso、ECMWF和SCMOC的日最高(低)气温预报进行订正,并作对比检验。结果表明,SCMOC、GRAPES_Meso和ECMWF的日最低气温预报准确率较日最高气温偏高,其中SCMOC的日最高和最低气温预报准确率最高,ECMWF次之,GRAPES_Meso最低。一元线性回归和递减平均方法对SCMOC的气温预报订正多为负效果,但对GRAPES_Meso和ECMWF的气温预报订正有明显正效果。订正后ECMWF与订正前SCMOC的预报相比,前者日最高和最低气温的预报准确率偏高。订正后GRAPES_Meso与订正前SCMOC的预报相比,前者日最低气温预报准确率偏低、2018年24 h和2019年24、48 h日最高气温预报准确率偏高。一元线性回归法对模式气温预报的订正能力和稳定性优于递减平均法。  相似文献   

17.
根据中央气象台自2017年10月—2018年9月20:00起报未来72 h 0.05 °×0.05 °分辨率格点日最高、最低温度指导预报和国家气象信息中心格点温度实况,应用Matlab神经网络工具箱提供的newrbe函数,建立基于径向基函数(RBF)神经网络的温度预报模型,对2018年10月—2019年9月RBF预报产品进行格点检验评估,并与同期的EC模式预报产品做了对比。结果表明:(1)通过RBF模型订正后的24 h、48 h和72 h日最高和最低温度预报准确率较中央气象台指导预报(NMC)分别提高了7.21%、6.98%、5.48%和5.67%、4.46%、4.47%,均为正技巧,且春、夏、秋季预报订正效果要好于冬季;(2)分区域预报检验来看,除海源、同心、彭阳的最高温度预报和海源、惠农的最低温度预报误差偏较大外,其他区域的误差基本都小于2 ℃。特别是对强降温、霜冻天气的温度预报准确率高于NMC,对预报员有一定的参考价值。   相似文献   

18.
利用2014~2015年阿坝州13站共730天08:00和20:00起报的SCMOC温度精细化指导预报资料,对比实况日最高(低)气温,进行预报质量检验。结果表明:日最高(低)气温预报准确率与预报时效成反比,两个时次预报的最低气温准确率高于最高气温,且最低气温预报准确率有明显的季节变化。08:00起报的日最低气温多出现负误差,其余预报最高(低)气温多出现正误差。日最低气温预报绝对误差与海拔高度有关。24h最高(低)气温预报绝对误差>4℃样本分析表明,温度平流、大气稳定度与非绝热过程对温度的影响明显,造成气温偏差的主要原因是降水及冷空气影响范围和强度,冷、暖平流影响偏差,高空槽强度和移动偏差等几方面。  相似文献   

19.
采用基于历史资料的模式距平订正法(ANO),利用2011~2015年欧洲中心高分辨率数值预报(ECMWF)的地面2m温度和广西区域自动站气温观测资料,对2016年广西区域2m温度预报进行订正试验,对比分析订正前和订正后的预报误差,结果表明:EC对广西区域2m温度的预报误差随着预报时效增加而逐渐增大,午后误差较大,夜间误差较小,预报值大多偏低。0~72h预报(较短预报时效)冬季误差较小,夏季误差较大;72~240h预报(较长预报时效)夏季误差较小,秋季和冬季误差较大。随预报时效增加,误差增大的幅度夏季较小,冬季较大。误差的离散度在较短预报时效的午后为冬季较小,夏季较大,在较长预报时效及夜间则与之相反。ANO方法对午后温度预报的订正效果优于当日其他时刻。该方法对夏季的温度预报有很好的订正效果,秋季的订正效果次之,春季的订正效果不明显,冬季的订正效果为负面作用。  相似文献   

20.
利用2016年1月1日—2018年12月31日吉林省381个站的逐日最高气温、最低气温和定时气温的观测数据,对ECMWF高分辨率模式的2 m最高、最低气温和定时气温预报进行检验分析.结果表明,ECMWF模式对吉林省的气温预报与实况存在一定偏差;从空间上看,自西向东气温预报准确率逐渐递减,预报误差逐渐增大;从时间上看,随预报时效的增长,预报准确率逐渐下降.对ECMWF的气温预报进行高度差订正后,模式最高气温24 h、48 h、72 h的预报准确率分别从52%、51%、50%提高至58%、56%、54%;最低气温准确率分别从58%、56%、54%提高至64%、62%、59%;定时气温准确率分别从63%、60%、58%,提高至67%、63%、61%.高度差订正的方法有效提高了模式气温预报的准确率,减小了模式预报误差,提高了模式预报释用能力,订正后的气温预报TS评分得到明显的提高.该方法已应用在吉林省客观预报的订正算法中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号