首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
空间尘埃等离子体Maser效应以及所导致的Langmuir辐射   总被引:1,自引:0,他引:1  
本从弱湍动等离子体理论出发,由Vlasov方程导出Maser效应作用机制下共振波的演化规律,并且讨论了尘埃等离子体电子束入射情况下,共振Langmuir波的增长率,研究结果表明,Maser效应比其它不稳定性(如本中论及的束流不稳定性等)能更好的解释空间中反常Langmuir辐射现象。  相似文献   

2.
马春玉  黄光力 《天文学报》1995,36(3):309-313
本文作者用相对论电子束在等离子体中运动时的色散关系讨论了纵向传播的波模的稳定性,发现静电Langmuir波和Alfven波是不稳定的,并计算了其增长率,而高频电磁模和硝声模是稳定的。相对论电子束激发的Langmuir波和Alfven波的不稳定性可用于解释射电喷流中相间的热斑、粒子再加速、辐射机制以及能量传输问题。  相似文献   

3.
赵金松 《天文学报》2023,64(3):36-246
在无碰撞等离子体中,波粒相互作用会引起电磁场与粒子之间能量转移,其结果之一是重塑粒子速度分布函数.因而,如何定量化波粒相互作用是日球层和天体等离子体研究中的一个基础问题.近年来,在定量化波粒相互作用问题的研究中,取得了很多重要成果.将主要介绍相关理论研究上的进展,特别是,将重点介绍新近提出的度量共振和非共振波粒相互作用的理论方法.还将介绍该方法在度量内日球层阿尔文模式波、质子束流不稳定性和电子热流不稳定性中波粒相互作用上的应用.  相似文献   

4.
向梁  吴德金  陈玲 《天文学报》2023,64(3):27-77
动力学阿尔文波是垂直波长接近离子回旋半径或者电子惯性长度的色散阿尔文波.由于波的尺度接近粒子的动力学尺度,动力学阿尔文波在太阳和空间等离子体加热、加速等能化现象中起重要作用.因此,动力学阿尔文波通常被认为是日冕加热的候选者.本研究工作深入、系统地调研了太阳大气中动力学阿尔文波的激发和耗散机制.基于日冕等离子体环境,介绍了几种常见的动力学阿尔文波激发机制:温度各向异性不稳定性、场向电流不稳定性、电子束流不稳定性、密度非均匀不稳定性以及共振模式转换.还介绍了太阳大气中动力学阿尔文波的耗散机制,并讨论了这些耗散机制对黑子加热、冕环加热以及冕羽加热的影响.不仅为认识太阳大气中动力学阿尔文波的驱动机制、动力学演化特征以及波粒相互作用提供合理的理论依据,而且有助于揭示日冕等离子体中能量储存和释放、粒子加热等能化现象的微观物理机制.  相似文献   

5.
弱磁化相对论电子束注入等离子体时,由非共振波粒相互作用激发的束-等离子体不稳定性可以直接放大电磁波,计算结果表明:在偏离共振条件的区域,电磁波仍可在较宽的频率范围被放大,并在每个共振峰下形成平台结构。随着谐波数的增高,增长率峰值逐渐变小,峰宽也变窄。本文还分析了电磁波的增长率随背景参数ω_(pe)/Ω_e及高能电子的入射方向和辐射方向的变化规律,在典型的日冕条件下,此类不稳定性所放大的电磁波的增长率大小、带宽、方向性、偏振及谐波等性质,可以用来解释太阳Ⅲ型射电爆发现象,本文的研究亦可用来解释其他天体等离子体辐射。  相似文献   

6.
弱磁化相对论电子束注入等离子体时,由非共振波粒相互作用激发的束-等离子体不稳定性可以直接放大电磁波。计算结果表明:在偏离共振条件的区域,电磁波仍可在较宽的频率范围被放大,并在每个共振峰下形成平台结构。随着谐波数的增高,增长率峰值逐渐变小,峰宽也变窄。本还分析了电磁波的增长率随背景参数wpe/Qe及高能电子的入射方向和辐射方向的变化规律。在典型的日冕条件下,此类不稳定性所放大的电磁波的增长率大小、  相似文献   

7.
本文试图利用等离子体的堆垒效应及波-粒子非共振加热机制对太阳色球-日冕过渡层出现的温度随高度陡分布现象提出定性定量的说明。分析表明,只要有一高能质子束从色球注入过渡层,通过等离子体波-粒子非线性相互作用,就能使温度在窄区域中出现陡分布。  相似文献   

8.
由Titan,Rhea和Iapetus轨道数值改进求解土星质量和形状参数   总被引:1,自引:0,他引:1  
对Titan、Rhea和Iapetus由数值改进产生轨道,并拟合1967-1988年的4514个星对的照相观测以求改进自由参数。土星系的质量Msa和形状参数J2,以及卫星的质量mIa,mRh作为自由参数参加求解。归算得:Msa=1/3498.0±0.14Msun(太阳质量)(2.858780×10-4±0.00010),J2=0.016473±0.000110,mIa=3.35×10-6Msa,mRh=4.44×10-6Msa。归算表明,由于选择了由Titan、Rhea、Iapetus组成的较合理的动力学系统进行数值积分和采用了不同星对(Iapetus-Titan,Rhea-Titan)观测资料作拟合改进求解,其结果显然要好。由地面观测资料归算的结果也进一步证实了空间测量结果的可靠性。  相似文献   

9.
本文着重介绍了太阳射电快速活动的机制(主要是电子回旋微波激射不稳定性机制和等离子体波-波相互作用机制)研究进展情况,并做了简单的述评。  相似文献   

10.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

11.
We consider the relaxation of an unstable distribution of fast non-relativistic electrons. Langmuir turbulence generated by the electrons is found to determine the saturation of an electron-cyclotron maser. The important role of nonlinear processes in Langmuir and electromagnetic waves is shown. The characteristic saturation time is about 1 ms. It is shown that both cyclotron maser emission and the transformation of plasma waves to transverse ones can be essential in the formation of observable radio spectra from solar flares.  相似文献   

12.
The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.  相似文献   

13.
The theory of pulsar radio emission is reviewed critically, emphasizing reasons why there is no single, widely-accepted emission mechanism. The uncertainties in our understanding of how the magnetosphere is populated with plasma preclude predicting the properties of the emission from first principles. Some important observational features are incorporated into virtually all the proposed emission mechanisms, and other observational features are either controversial or fail to provide criteria that clearly favor one mechanism over others. It is suggested that the criterion that the emission mechanism apply to millisecond, fast young, and slow pulsars implies that it is insensitive to the magnetic field strength. It is argued that coherent emission processes in all astrophysical and space plasmas consist of emission from many localized, transient subsources, that any theory requires both an emission mechanism and a statistical theory for the subsource, and, that this aspect of coherent emission has been largely ignored in treatments of pulsar radio emission. Several specific proposed emission mechanisms are discussed critically: coherent curvature emission by bunches, relativistic plasma emission, maser curvature emission, cyclotron instability and free electron maser emission. It is suggested that some form of relativistic plasma emission is the most plausible candidate although one form of maser curvature emission and free electron maser emission are not ruled out. Propagation effects are discussed, emphasizing the interpretation of jumps between orthogonal polarizations.  相似文献   

14.
K. H. Tsui 《Solar physics》1996,168(1):171-182
The generation of bright solar radio spikes by the beam-driven cyclotron resonance maser mechanism (the resonant interaction of an electron beam with a circularly polarized wave in a background plasma under the action of a guide magnetic field) is studied. Nonlinear effects such as radiation damping and gyrophase bunching on electron energy and momentum are responsible for the enhanced direct energy conversion between the beam and the coherent wave. Factors such as beam energy spread and pitch angle distribution are analyzed. The intense maser radiation is carried at the source by the circularly polarized wave propagating along the magnetic field. Due to the magnetic field curvature, the outgoing maser radiation converts into extraordinary and ordinary modes. The extraordinary mode suffers from plasma absorption at the second harmonic layer, whereas the ordinary mode is likely to get through.  相似文献   

15.
The electron-cyclotron maser is believed to be the source of microwave spike bursts often observed during solar and stellar flares. Partial absorption of this radiation as it propagates through the corona can produce plasma heating and soft X-ray emission over an extended region. In this paper, the propagation and absorption of the maser radiation during solar flares are examined through linear theory and electro-magnetic particle simulations. It is shown using linear theory that strong absorption of the radiation should occur as it propagates towards the second harmonic layer where the magnetic field is half as strong as in the emission region. Only radiation propagating nearly parallel to the magnetic field in a low-temperature plasma may be able to escape under certain, limited conditions. Finite temperature effects can cause radiation propagating nearly perpendicular to the magnetic field to refract, causing enhanced absorption. Particle simulations are then used to evaluate the nonlinear response of the plasma as the maser radiation propagates through the absorption layer. It is shown that some of the maser radiation is able to escape through a process of absorption below the second harmonic of the local gyrofrequency and re-emission above it. The fraction able to escape is much higher than that predicted by linear theory, although the amount of escaping energy is only a small fraction of the incident energy. The bulk of incident energy goes into the perpendicular heating of the ambient electrons, with the rate of energy absorption showing no signs of leveling off during the simulations. This indicates that the absorption layer does not become optically thin after continuous heating by the maser radiation. A few electrons are accelerated to several tens of keVs as a result of the heating.  相似文献   

16.
Acceleration processes for fast particles in astrophysical and space plasmas are reviewed with emphasis on stochastic acceleration by MHD turbulence and on acceleration by shock waves. Radiation processes in astrophysical and space plasmas are reviewed with emphasis on plasma emission from the solar corona and electron cyclotron maser emission from planets and stars.  相似文献   

17.
太阳射电爆发(Solar Radio Burst, SRB)是太阳高能电子与背景等离子体相互作用产生的感应辐射现象,其多样的动力学谱类型及其复杂的精细结构反映了辐射源区磁等离子体结构状态丰富的物理信息,而相关辐射机制则是解读相关物理信息的关键工具.长期以来,在SRB辐射机制的研究中一直存在着争议不决的两种主要机制,即等离子体辐射机制和电子回旋脉泽(Electron Cyclotron Maser, ECM)辐射机制.近年来,针对传统的ECM辐射机制应用到SRB现象时遇到的一些主要困难,发展了由幂律谱电子低能截止驱动和包含快电子束自生阿尔文波效应的新型ECM驱动模型,并成功应用于解释各类不同SRB动力学谱的形成机制.基于这些新型的ECM辐射模型,系统地总结了ECM辐射机制在各种不同类型SRB现象中的应用,并对它们不同动力学谱结构的形成给出了一致统一的物理解释.  相似文献   

18.
It has been argued that the loss-cone-driven electron cyclotron maser instability can account for the properties of millisecond microwave spike bursts observed during some solar flares. However, as it propagates outward from the corona, maser radiation undergoes gyroresonance absorption when its frequency is a harmonic of the local electron-cyclotron frequency. Existing analytical models using slab geometries predict that this absorption should be sufficiently strong to prevent the radiation from being seen at the observed levels, except under highly restrictive conditions or for unrealistic plasma parameters. A more comprehensive analysis is presented here to determine if and when maser radiation can escape to produce microwave spike bursts. This analysis employs numerical raytracing and incorporates propagation and absorption of fundamental maser emission in a realistic model of a coronal flux loop. It is found that ranges of physical conditions do exist under which maser radiation can escape to an observer and that these conditions are much more limiting for fundamental emission in the extraordinary ()-mode than in the ordinary (o)-mode. Detailed investigation implies that escaping radiation in the -mode is highly directional and chiefly observable toward the center of the solar disk, while escapingo-mode radiation is found to emerge from the corona over a much wider range of directions, with some cases corresponding to radiation observable near the solar limb.  相似文献   

19.
Some successful features of the theory of radiation from plasma instabilities in space plasmas are reviewed, with emphasis on plasma emission in type III solar radio bursts due to the bump-in-tail instability, and planetary radio emissions due to loss-cone driven electron cyclotron maser emission. The emission occurs in sporadic, localized bursts, and the theory for the instability needs to be combined with some statistical ideas to model the observed emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Synchro-curvature radiation describes the emission from a relativistic charged par- ticle which is moving and spiralling in a curved magnetic field. We investigate the maser emission for synchro-curvature radiation including drift of the guiding center of the radiating electron. It is shown that under some conditions the absorption coefficient can be negative, so maser can happen. These conditions are different from those needed for maser emission of curvature radiation including drift of the charged particles. We point out that our results, in- cluding the emissivity, can reduce to these of curvature radiation. Previously it was found that synchro-curvature radiation can not generate maser in vacuum, but we argue that synchro- curvature radiation including drift can generate maser even in vacuum. We discuss the possi- bilities of the potential applications of the synchro-curvature maser in modeling gamma ray bursts and pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号