首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatoms are major actors in the export of organic carbon out of the euphotic zone. Yet, the processes linking biogenic silica and carbon sedimentation fluxes to deep oceanic layers remain unclear. Analysing organic fractions in biominerals is challenging because efficient cleaning often led to structural alteration of organic molecules. Hence, although lipids are widely used as biogeochemical markers in ocean flux study, few studies have dealt with the lipids that are associated with frustules. In the present study, a protocol was set up to extract and quantify the fatty acids associated to the frustule of the diatom species Thalassiosira weissflogii. The protocol involves solvent extraction of diatom external lipids, followed by clean frustule dissolution by 4% NaOH during 1 h at 95 °C and subsequent solvent re-extraction of frustule-associated lipids. Results confirmed that this protocol was efficient first, to isolate the frustule from the rest of the cellular organic carbon and second to extract and quantify fatty acids (FA) associated to frustules of this species. FA composition of the frustules was significantly different from that of the whole cells consisting primarily of 14:0, 16:0 and 18:0 FA, as well as a smaller portion of 16:1 and 18:1 unsaturated FA. Frustule-associated FA constituted 7% of the total FA and 1.8% of the total POC. The 30 days T. weissflogii degradation/dissolution experiment suggested that frustule FA 14:0 and 16:0 were mainly associated with the bSiO2 phase dissolving slowly as no degradation of this pool was measured despite 78% frustule dissolution. At the end of the degradation experiment, this pool constituted 5.8% of the remaining total POC suggesting an effective protection by the frustule through strong interaction with the biogenic silica which is consistent with the correlation observed at depth between Si and POC sedimentation fluxes.  相似文献   

2.
We investigated amino acids and pigments in particles settling through the water column of the Southern Ocean and showed that spatial and temporal differences in phytoplankton source and consumer population influence sinking particle composition. Sediment traps were deployed along 170°W from November 1996 to March 1998 as part of the United States Joint Global Ocean Flux Study (US JGOFS) Antarctic Environment Southern Ocean Process Study (AESOPS) program. Peak fluxes of amino acids and pigments occurred during austral spring and summer (November–April) and were highest in the Antarctic Circumpolar Current (ACC). Compositional changes in pigments and total hydrolyzed amino acids demonstrate how the source of sinking particles varies with latitude and suggest that sinking material was most degraded in relatively diatom-depleted regions and toward the end of the high-flux period (February–March). At the Subantarctic Front, high proportions of pheophytin and β-alanine illustrate the important role of microbes in degradation. Further south at the Antarctic Polar Front, glycine, pyropheophorbide, and pheophorbide enrichments reflected a greater contribution of diatoms and greater processing by zooplankton grazers. Even further south in the ACC, enrichments of the diatom pigment fucoxanthin, diatom cell wall indicators glycine and serine, and diatom frustule-bound amino acids suggested the settling of empty frustules and aggregates. Despite being protected by the mineral, diatom-bound amino acids were not preferentially preserved between shallow and deep traps, possibly because of silica dissolution and a relatively small amount of organic carbon remineralization. Our results show that organic matter at diatom-rich stations is removed by mechanisms that do not result in the appearance of organic matter degradation indicators. Recent observations that calcium carbonate has a higher carrying capacity for sinking organic matter than silica may be related to diatom silicification, physiological status and decomposition pathway.  相似文献   

3.
海洋硅藻种类繁多,具有因种而异的形状奇特的刚性细胞壁,称作硅质壳。硅质壳主要由无定形的二氧化硅构成,在纳米至微米尺度的三维结构(如孔、脊或管状结构)上表现出高度的规律性和精确的重现性。仿效硅藻,在温和的条件下制造超精细微纳米材料,成为众多从事生物、化学、材料研究工作者追逐的焦点。本文从硅藻硅质壳的形成机理及体外仿生、影响硅藻硅质壳结构的外在因素、硅藻硅质壳的化学修饰与应用3个方面的研究进展进行了综述。  相似文献   

4.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   

5.
Dissolution experiments in batch and flow-through reactors were combined with data on sediment composition and pore water silicic acid profiles to identify processes controlling the solubility of biogenic silica and the build-up of silicic acid in marine sediments. The variability of experimentally determined biogenic silica solubilities is due, in part, to variations in specific surface area and Al content of biosiliceous materials. Preferential dissolution of delicate skeletal structures and frustules with high surface areas leads to a progressive decrease of the specific surface area. This may cause a reduction of the solubility of deposited biosiliceous debris by 10–15%, relative to fresh planktonic assemblages. Dissolution of lithogenic (detrital) minerals in sediments releases dissolved aluminum to the pore waters. This aluminum becomes structurally incorporated into deposited biogenic silica, further decreasing its solubility. Compared to Al-free biogenic silica, the solubility of diatom frustules is lowered by as much as 25% when one out of every 70 Si atoms is substituted by an Al(III) ion.The build-up of silicic acid in pore waters of sediments with variable proportions of detrital matter and biogenic silica was simulated in batch experiments using kaolinite and basalt as model detrital constituents. The steady-state silicic acid concentrations measured in the experiments decreased with increasing detrital-to-opal ratios of the mixtures. This trend is similar to the observed inverse relationship between asymptotic pore water silicic acid concentrations and detrital-to-opal ratios in Southern Ocean sediments. Flow-through reactor experiments further showed that in detrital-rich sediments, precipitation of authigenic alumino-silicates may prevent the pore waters from reaching equilibrium with the dissolving biogenic silica. This agrees with data from Southern Ocean sediments where, at sites containing more than 30 wt.% detrital material, the pore waters remain undersaturated with respect to the experimentally determined in situ solubility of biogenic silica.The results of the study show that interactions between deposited biogenic silica and detrital material cause large variations in the asymptotic silicic acid concentration of marine sediments. The production of Al(III) by the dissolution of detrital minerals affects the build-up of silicic acid by reducing the apparent silica solubility and dissolution kinetics of biosiliceous materials, and by inducing precipitation of authigenic alumino-silicate minerals.  相似文献   

6.
Distribution of silicic acid (Si(OH)4) in bottom water was investigated in the central Seto Inland Sea under stratified conditions in summer. Water samples were collected at 10 stations on April 24 and 25 and July 7 and 8, 2012. In July, stratification progressed, and a cold water mass (dome) of <20 °C appeared. In response to the cold dome, low oxygen content was observed in the bottom layer of the eastern part of Hiuchi-Nada. In this water mass site, apparent oxygen utilization values calculated from dissolved oxygen (DO) concentrations increased, coinciding with increase of Si(OH)4 concentrations from April to July. This suggests that increase of Si(OH)4 [dissolution of biogenic silica (diatom frustules)] was accompanied by DO consumption due to degradation of organic matter such as plankton soft tissue. These findings suggest that a bacterial degradation of the organic matrix that covers diatom frustules could accelerate the dissolution of biogenic silica in bottom water under stratified conditions.  相似文献   

7.
海洋硅藻硅质细胞壁结构的形成机理研究概述   总被引:5,自引:0,他引:5  
硅藻具有形态各异、结构复杂、精美绝伦的硅质细胞壁,是海洋中进行生物硅化最主要的生物体。硅质细胞壁的形成同样是一个错综复杂的过程,它涉及硅藻细胞将硅酸从胞外转运到胞内;硅酸在细胞内的转移;在硅沉积囊泡(SDV)中的浓缩沉积;最后合成具种类特异性的细胞壁。重点介绍硅酸转运基因(SITs)的分子特征与作用机制;与生物硅化相关的三种蛋白即硅体蛋白(frus-tulins)、亲硅蛋白(silaffins)和侧壁蛋白(pleuralins)的结构与功能;硅质结构如何在硅沉积囊泡内最终形成的模式。  相似文献   

8.
海洋沉积物中残留的硅壳、甲藻孢囊、类脂类化合物及生物硅等生态参数被广泛应用于反演和指示海洋古环境特征.本研究通过测定烟台四十里湾表层沉积物中的硅藻化石、甲藻孢囊、菜籽甾醇、甲藻甾醇及生物硅5种生态参数,比较不同生态参数的相关性及它们在反演海洋环境中的功能差异,建立了多参数综合应用的研究方法.研究发现,沉积物中的硅壳丰度与菜籽甾醇含量及生物硅含量存在明显正相关关系(P<0.05),菜籽甾醇含量与生物硅含量可以较好的佐证与提高沉积物中硅壳对硅藻生物量指示的准确性;甲藻孢囊与甲藻甾醇含量相关性不明显(P>0.05),相较而言,甲藻甾醇可以更准确的反演甲藻的生物量.因此,生物与化学参数的结合应用不仅可以提高生物量指示的精确性,而且有助于从物种组成角度更好的了解藻类对环境变化的响应特征.  相似文献   

9.
硅藻具有形态各异、结构复杂、精美绝伦的硅质细胞壁,是海洋中进行生物硅化最主要的生物体。硅质细胞壁的形成同样是一个错综复杂的过程,它涉及硅藻细胞将硅酸从胞外转运到胞内;硅酸在细胞内的转移;在硅沉积囊泡(SDV)中的浓缩沉积;最后合成具种类特异性的细胞壁。重点介绍硅酸转运基因(SITs)的分子特征与作用机制;与生物硅化相关的三种蛋白即硅体蛋白(frustulins)、亲硅蛋白(silaffins)和侧壁蛋白(pleuralins)的结构与功能;硅质结构如何在硅沉积囊泡内最终形成的模式。  相似文献   

10.
The majority of opal produced by diatoms dissolves during their sedimentation to the seafloor, but spatial and temporal variability of dissolution rates are large. Controlled laboratory experiments using live phytoplankton or phyto-detritus may help identify the different processes, including those that are biologically mediated or physico-chemically driven, that impact the dissolution of frustules and the aforementioned variability. Results of eight bSiO2 dissolution experiments, seven of which were conducted at low temperatures (<6 °C) are presented within the context of earlier similar studies, and different phases of dissolution dynamics characterized. TEP concentration, aggregation and the physiological status of the diatoms determined the period during which diatoms may maintain the protective membrane that surrounds their frustule and effectively reduces or completely inhibits (lag period) dissolution for some time. Once diatoms loose the capability to maintain their protective membrane, bacterial activity compromises it. Physico-chemical dissolution, which depends on frustule structure and abiotic environmental conditions, begins once the protective membrane is damaged. The ability of diatoms to maintain their membrane, the bacterial composition and activity governing its degradation, and the physico-chemical dissolution dynamics of exposed frustules are all impacted by temperature. In our experiments instantaneous dissolution rates were not dependant on bSiO2 concentration at low temperatures, although such a relationship was observed under otherwise identical conditions at 15 °C, implying that biotic factors rather than physico-chemical processes initially dominated dissolution at polar temperatures. Since inhibition of bSiO2 dissolution at low temperatures was inhibited to a greater extent than organic matter degradation, we postulate that it was not reduced bacterial activity but the enhanced ability of diatoms to maintain their membrane and thus withstand microbial attack that caused the low initial dissolution rates at <6 °C. In situ, interactions between the different biotic and abiotic processes impacting dissolution combined with differences in sinking velocity of diatom aggregates and grazing effects could easily explain high spatial and temporal variability in the accumulation of diatoms on the seafloor. Simple calculations based on our experimental results suggest that Fragilariopsis kerguelensis, for example, would be appreciably more likely to reach the seafloor than Chaetoceros debilis if both grow at low growth rates, e.g. under growth limiting conditions. However, dissolution behavior of Chaetoceros debilis during sedimentation may differ under conditions where this species forms large blooms.  相似文献   

11.
用等离子体原子发射光谱法(ICP-AES)分析了珠江马口站和三水站1997-1998年度3个典型水文时段径流悬移质中部分金属元素的含量,同时用元素分析仪测定了其中的有机碳、氮的含量,结果表明,在不同性质的水文动力条件下,流域侵蚀产出的河流悬移质的化学组成发生了变化,这主要缘于有机质在悬移质中所占质量分数的差别。汛期增强的水文动力主要表现为对流域土壤矿物的优先侵蚀,虽然有机质的总侵蚀量也同时增加,但在悬移质中的质量分数却相对减少,而在枯水期较弱的水文动力条件下,河流悬移质中有机质的质量分数增加,悬移质中的有机质对液相中的部分重金属元素产生较矿物更大的吸附作用。  相似文献   

12.
Sediment and water column data from four sites in North, Central and South San Francisco Bays were collected monthly from November 1999 through November 2001 to investigate the seasonal variation of benthic organic matter and chlorophyll in channel sediments, the composition and quality of sediment organic matter (SOM), and the relationship between seasonal patterns in benthic organic matter and patterns in water column chlorophyll. Water column chlorophyll peaked in the spring of 2000 and 2001, characteristic of other studies of San Francisco Bay phytoplankton dynamics, however an unusual chlorophyll peak occurred in fall 2000. Cross-correlation analysis revealed that water column chlorophyll at these four channel sites lead sediment parameters by an average of 2 to 3 months. Sediment organic matter levels in the San Francisco Bay channel showed seasonal cycles that followed patterns of water column production: peaks in water column chlorophyll were followed by later peaks in sediment chlorophyll and organic matter. Cyclical, seasonal variations also occurred in sediment organic matter parameters with sediment total organic carbon (TOC) and total nitrogen (TN) being highest in spring and lowest in winter, and sediment amino acids being highest in spring and summer and lowest in winter. Sediment chlorophyll, total organic carbon, and nitrogen were generally positively correlated with each other. Sediment organic matter levels were lowest in North Bay, intermediate in Central Bay, and highest in South Bay. C:N ratio and the ratio of enzyme hydrolyzable amino acids to TOC (EHAA:TOC) data suggest that SOM quality is more labile in Central and northern South Bay, and more refractory in North Bay and southern South Bay.  相似文献   

13.
Suspended particulate matter samples were collected from the water column, the bottom nepheloid layer and the ‘ fluffy layer ’ from four stations along a coastal-basin transect in the Pomeranian Bight, western Baltic Sea. Sampling was performed nine times between October 1996 and December 1998 for various analyses, including electron probe x-ray micro analysis for detailed mineralogical investigations.Specific vertical patterns of clay mineral distributions were found. Suspended particulate matter (SPM) in the bottom nepheloid layer and the ‘ fluffy layer ’ overlying sediments was enriched in organic carbon and hydrated three layer clay minerals, whereas the non-aggregated SPM was dominated by quartz and biogenic opal. It appears that separation effects operate during aggregation of mineral particles and organic matter in repeated cycles of resuspension and settling. No clear seasonal variations in the composition of the SPM were found, in spite of high spatial and temporal variability of biological and physical variables. The results suggest that preferential incorporation, possibly aided by microbiological colonization, of hydrated three layer silicates into the organic flocs is a process that occurs under a wide range of conditions. Because aggregates sink faster than individual particles, aggregate formation led to a relative enrichment of illite and smectite in the near-bottom layers. Considering the affinity of organic contaminants and heavy metals to organic matter, the selective removal of aggregated organic matter and hydrated three-layer clay minerals from the water column and enhanced transport in the near-bottom fluffy layer may be a natural cleansing mechanism operating in the shallow waters of the bight.  相似文献   

14.
Fluxes of amino acids and hexosamines to the deep South China Sea   总被引:2,自引:0,他引:2  
Settling particles collected by sediment traps deployed between 1987 and 1999 in the northern, central and southwestern South China Sea (SCS) were analysed to study seasonal, interannual and spatial variations in the composition and flux of labile particulate matter. Results were combined with remote-sensing and surface-sediment data in order to describe the factors controlling the preservation of organic matter en route from the upper ocean to the seafloor. Organic carbon, amino acid and hexosamine fluxes generally follow the fluxes of total particulate matter, with maxima during the SW and NE monsoon periods. During non-El Niño conditions spectral amino acid distributions show that degradation of organic matter in the water column decreases as the flux rates increase. This is suggested to be the combined result of enhanced primary productivity, greater input of lithogenics serving as ballast to increase settling rates, and sorption of labile components to clay minerals. During El Niño conditions, in contrast, the degree of organic matter degradation is at very high and comparable levels at all trap sites. Flux component seasonality is strongly reduced except for the coastal upwelling areas, particularly off central Vietnam, which show significantly higher fluxes of organic carbon and lithogenic matter as compared to the open SCS. This suggests that the fluxes are affected by lateral advection of reworked organic matter from riverine sources or resuspended sediments from the nearby shelf/slope. Comparison of the measured organic carbon fluxes in 1200 m depth with those accumulating in surface sediments results in a more than 80% loss of organic matter before final burial in the sediments. The degree of organic matter preservation in the surface sediments of the deep SCS is distinctly lower than in other monsoonal oceans. This may be due to varying lithogenic input and almost complete dissolution of protective biogenic mineral matrices at greater water depth.  相似文献   

15.
Recent studies have revealed that lateral transport and focusing of particles strongly influences the depositional patterns of organic matter in marine sediments. Transport can occur in the water column prior to initial deposition or following sediment re-suspension. In both cases, fine-grained particles and organic-rich aggregates are more susceptible to lateral transport than coarse-grained particles (e.g., foraminiferal tests) because of the slower sinking velocities of the former. This may lead to spatial and, in the case of redistribution of re-suspended sediments, temporal decoupling of organic matter from coarser sediment constituents. Prior studies from the Argentine Basin have yielded evidence that suspended particles are displaced significant distances (100–1000 km) northward and downslope by strong surface and/or bottom currents. These transport processes result in anomalously cold alkenone-derived sea-surface temperature (SST) estimates (up to 6 °C colder than measured SST) and in the presence of frustules of Antarctic diatom species in surface sediments from this area. Here we examine advective transport processes through combined measurements of compound-specific radiocarbon ages of marine phytoplankton-derived biomarkers (alkenones) from core tops and excess 230Th (230Thxs)-derived focusing factors for late Holocene sediments from the Argentine Basin. On the continental slope, we observe 230Thxs-based focusing factors of 1.4–3.2 at sites where alkenone-based SST estimates were 4–6 °C colder than measured values. In contrast, alkenone radiocarbon data suggest coeval deposition of marine biomarkers and planktic foraminifera, as alkenones in core tops were younger than, or similar in age to, foraminifera. We therefore infer that the transport processes leading to the lateral displacement of these sediment components are rapid, and hence probably occur in the upper water column (<1500 m).  相似文献   

16.
《Oceanologica Acta》1998,21(4):521-532
A sediment trap experiment was carried out in the West Caroline Basin, located in the equatorial western Pacific between influences of the Asian monsoon and the open ocean. Annual mass flux at the shallow trap at Site 1 was 57.10 g m-2 yr-1. Generally, the higher flux of organic matter was associated with higher activities of biogenic opal-producing and carbonate-producing plankton communities. In addition, as the organic matter content increases, the organic carbon/carbonate carbon ratio shows a tendency to increase. Carbonate-producing plankton was predominant during periods 1 and 3 (May to July and November to the beginning of December), which could be due to limited silica supply to the euphotic zone. On the other hand, surface sea water was more nutrient-rich during periods 2 and 4 (August to October and the end of December to April) at Site 1. These high total mass fluxes could be stimulated by wind.The amount of biogenic components collected in the sediment traps and the accumulation in surface sediments at Site 1 could be compared with primary productivity values. Carbonate and biogenic opal fluxes were 99% and 90% less, respectively, in the surface sediments compared to those in the shallow sediment trap. This could be due to the reaction of sinking particles with undersaturated deep sea water just above the sea floor, rather than with the water column during sinking. About 20% of the organic matter was decomposed between the shallow and deep sediment traps and more than 98% between the deep sediment trap and final burial in the surface sediments. The relative amount of organic carbon preserved in surface sediments was about 0.10% of annual primary productivity.  相似文献   

17.
Lake Poukawa, a shallow hardwater lake, is situated on calcareous lake silt overlying peat and alluvium. Two tephra layers, Taupo Pumice and Waimihia Lapilli, aged c. 2000 and 3500 calendar years respectively, were present in four cores (c. 6 m long) of the lake sediment. The diatom flora of the cores was studied to find any indication of changes in the lake morphology and to assess the effects of tephra deposition. Increased abundance of small Fragilaria spp. appears to indicate periods when the lake was less extensive, c. 3700–3500 y ago, and c. 2800–3000 y ago. In the recent past, increased abundance of Fragilaria spp. in lake sediment near the present southern margin almost certainly coincides with artificial draining since A.D. 1931. The occurrence of marine sponge spicules in the cores probably indicates that rates of erosion in the catchment were low before 2500 y ago and high 100–0 y ago. Diatom samples taken at close intervals adjacent to the Taupo and Waimihia tephras indicate that above the ash estimated numbers of diatoms per unit dry weight increase, but the proportion of epiphytic species decreases. Some of the possible causes of this increase are discussed. The tephra layers possibly preserved more diatom frustules, or increased diatom growth by supplying silica, phosphorus, and sulphur nutrients directly, or organic matter from vegetation damage in the surrounding catchment. Alternatively, in shallow hardwater lakes, if acids are deposited with the tephra and its fine particles form an impermeable layer on the calcite sediments the lake will become less alkaline and nutrient depleted.  相似文献   

18.
理解早期成岩过程中有机质的化学和同位素分馏对于研究海洋和湖泊环境中的生物地球化学过程是很重要的。将珠江口外近海生物成因有机质分为可水解氨基酸、碳水化合物、脂类和酸不溶四个部分,分析了有机质的化学和同位素组成(δ13C,δ15N),借以讨论沉积有机质在埋藏的早期成岩过程中所发生的化学和同位素改变,结果表明,从浮游生物→悬浮颗粒物→表层沉积物→沉积柱内部,易降解组分可水解氨基酸、碳水化合物、脂类占样品总有机碳的份额依次降低。沉积物及四个有机部分的稳定碳同位素组成在纵向上随深度保持相对恒定,而在不同有机部分之间差异明显。不同类型有机物的分解速率差异在改变有机质化学成分的同时,导致其δ13C发生小幅度负向漂移;细菌有机质的形成和分解对有机质化学成分和同位素组成演化也有重要贡献,并且在一定程度上抵消了上述δ13C的负向漂移,其结果导致沉积有机质的δ13C略低于浮游生物;另一方面,由于异养菌生长过程中的氮同位素分馏系数与可利用氮源的特征和培养基的性质等多种因素有关,导致沉积物的δ15N变化范围增大。在这里δ13C可以可靠地指示该海域沉积有机质的来源,而δ15N变化范围较大且规律不明显,难以用作沉积有机质来源的指示。  相似文献   

19.
对南海南部25个表层沉积样进行了生物硅的测定分析,试图揭示南海南部表层沉积生物硅的分布及其对现代海洋环境的指示意义,以便为古海洋学研究提供进一步的科学依据。研究发现,表层沉积物中生物硅含量与其所处水深呈显著正相关关系,相关系数达到0.782。陆架浅水区表层沉积物中生物硅含量非常低,不能反映表层水体中硅质生物生产力情况,这可能与沉积类型和陆源物质输入影响有关。深水区表层沉积物中生物硅的含量分布表明,其不仅能反映出表层水体中硅质生物的古生产力水平,而且还能指示上升流的强弱,从而进一步证实了利用沉积物中生物硅含量来追踪上升流发育和变化的有效性与可信度。研究结果还显示,在研究区域中北部表层沉积生物硅中放射虫和海绵骨针较硅藻占有更大的比重,这可能是由于硅藻易被溶解并易被其他生物体摄食的缘故。在有上升流发育的海域,放射虫、硅藻和海绵骨针基本上均表现出较高的丰度,这与高的生物硅含量相一致。  相似文献   

20.
This article is a brief and selective introduction to the literature and concepts concerning the fate and recycling of carbon compounds in the marine environment. It provides a framework for the other papers in the session and emphasises the areas of ignorance and the implications to be drawn from them.The fate of carbon compounds in oceanic water columns and sediments is reviewed in terms of regions and processes. Particular attention is given to certain regions — surface film and associated zone, the water column and the upper layer of the bottom sediments — and processes — microbial activity, association of organic materials and minerals and the formation and diagenesis of particulate organic matter.Most of the organic matter in the ocean is rapidly recycled but the processes, rates and fluxes are poorly understood. Major areas of ignorance include the half-lives of individual compounds and of classes of compounds and the role of microorganisms, both in the water column and in the bottom sediments. Measurements and experiments need to be conducted in the oceans and in the laboratory. Chemical and biochemical changes in the short and long term require recognition if the residual organic matter of sediments is to be interpreted in terms of past oceanic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号