首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

2.
Panseok Yang  David Pattison 《Lithos》2006,88(1-4):233-253
The paragenesis of monazite in metapelitic rocks from the contact aureole of the Harney Peak Granite, Black Hills, South Dakota, was investigated using zoning patterns of monazite and garnet, electron microprobe dating of monazite, bulk-rock compositions, and major phase mineral equilibria. The area is characterized by low-pressure and high-temperature metamorphism with metamorphic zones ranging from garnet to sillimanite zones. Garnet porphyroblasts containing euhedral Y annuli are observed from the garnet to sillimanite zones. Although major phase mineral equilibria predict resorption of garnet at the staurolite isograd and regrowth at the andalusite isograd, textural and mass balance analyses suggest that the formation of the Y annuli is not related to the resorption-and-regrowth of garnet having formed instead during garnet growth in the garnet zone. Monazite grains in Black Hills pelites were divided into two generations on the basis of zoning patterns of Y and U: monazite 1 with low-Y and -U and monazite 2 with high-Y and -U. Monazite 1 occurs in the garnet zone and persists into the sillimanite zone as cores shielded by monazite 2 which starts to form in the andalusite zone. Pelites containing garnet porphyroblasts with Y annuli and monazite 1 with patchy Th zoning are more calcic than those with garnet with no Y annuli and monazite with concentric Th zoning. Monazite 1 is attributed to breakdown of allanite in the garnet zone, additionally giving rise to the Y annuli observed in garnet. Monazite 2 grows in the andalusite zone, probably at the expense of garnet and monazite 1 in the andalusite and sillimanite zones. The ages of the two different generations of monazite are within the precision of chemical dating of electron microprobe. The electron microprobe ages of all monazites from the Black Hills show a single ca. 1713 Ma population, close to the intrusion age of the Harney Peak Granite (1715 Ma). This study demonstrates that Y zoning in garnet and monazite are critical to the interpretation of monazite petrogenesis and therefore monazite ages.  相似文献   

3.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

4.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   

5.
Three lines of evidence from schists of the Great Smoky Mountains, NC, indicate that isogradic monazite growth occurred at the staurolite-in isograd at ∼600°C: (1) Monazite is virtually absent below the staurolite-in isograd, but is ubiquitous (several hundred grains per thin section) in staurolite- and kyanite-grade rocks. (2) Many monazite grains are spatially associated with biotite coronas around garnets, formed via the reaction Garnet + Chlorite + Muscovite = Biotite + Plagioclase + Staurolite + H2O. (3) Garnets contain high-Y annuli that result from prograde dissolution of garnet via the staurolite-in reaction, followed by regrowth, and rare monazite inclusions occur immediately outside the annulus and in the matrix, but not in the garnet core. Larger monazite grains also exhibit quasi-continuous Th zoning with high Th cores and low Th rims, consistent with monazite growth via a single reaction and fractional crystallization during prograde growth. Common silicates may host sufficient P and LREEs that reactions among them can produce observable LREE phosphate. Specifically phosphorus contents of garnet and plagioclase are hundreds of parts per million, and dissolution of garnet and recrystallization of plagioclase could form thousands of phosphate grains several micrometers in diameter per thin section. LREEs may be more limiting, but sheet silicates and plagioclase can contain tens to ∼100 (?) ppm LREE, so recrystallization of these silicates to lower LREE contents could produce hundreds of grains of monazite per thin section. Monazite ages, determined via electron and ion microprobes, are ∼400 Ma, directly linking prograde Barrovian metamorphism of the Western Blue Ridge with the “Acadian” orogeny, in contrast to previous interpretations that metamorphism was “Taconian” (∼450 Ma). Interpretation of ages from metamorphic monazite grains will require prior chemical characterization and identification of relevant monazite-forming reactions, including reactions previously viewed as involving solely common silicates.  相似文献   

6.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

7.
Low‐P granulite facies metapelitic migmatites in the Wuluma Hills, Strangways Metamorphic Complex, Arunta Block, preserve evidence of polyphase deformation and migmatite formation which is of the same age of the c. 1730 Ma Wuluma granite. Mineral equilibria modelling of garnet‐orthoproxene‐cordierite‐bearing assemblages using thermocalc is consistent with peak S3 conditions of 6.0–6.5 kbar and 850–900 °C. The growth of orthopyroxene and garnet was primarily controlled by biotite breakdown during partial melting reactions. Whereas orthopyroxene in the cordierite‐biotite mesosome shows enrichment of heavy‐REE (HREE) relative to medium‐REE (MREE), orthopyroxene in adjacent garnet‐bearing leucosome shows depletion of HREE relative to MREE. There is no appreciable difference in major element contents of minerals common to both the mesosome and leucosome. The REE variations can be satisfactorily explained by decoupling of major element and REE partitioning, in the context of appropriate phase‐equilibria modelling of a prograde path at ~6 kbar. Sparse garnet nucleii formed at ~760 °C, along with concentrated leucosome development and preferentially partitioned HREE. Further heating to ~800 °C at constant or subtly increasing pressure conditions additionally stabilized orthopyroxene and decreased the garnet mode. Orthopyroxene in the leucosome inherited an REE pattern consequent to the partial consumption of garnet, it being distinct from the REE pattern in mesosome orthoproxene that was mostly controlled by biotite breakdown. Such within‐sample variability in the enrichment of heavy REE indicates that caution needs to be exercised in the application of common elemental partitioning coefficients in spatially complex metamorphic rocks.  相似文献   

8.
Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.  相似文献   

9.
Results from forward modelling of garnet growth and U–Th–Pb chemical dating suggest three periods of metamorphism that affected metapelitic rocks of the Rappold Complex (Eastern European Alps). Garnet first grew during Barrovian-type metamorphism, possibly during the Carboniferous Variscan orogeny. The second period of metamorphism produced monazite and resulted in minor garnet growth in some samples. Variable garnet growth was controlled by changes to the effective bulk rock composition resulting from resorption of older garnet porphyroblasts. Monazite crystals have variable morphology, textures and composition, but all yield Permian ages (267 ± 12 to 274 ± 17 Ma). In samples in which there was Permian garnet growth, monazite forms isolated and randomly distributed grains. In other samples, monazite formed pseudomorphous clusters after allanite. This difference is attributed to higher transport rates of monazite-forming elements in samples which underwent dehydration reactions during renewed garnet growth. The third and final period of garnet growth took place during Eo-Alpine (Cretaceous) metamorphism. Garnet of this age displays a wart-like texture. This may reflect transport-limited growth, possibly as a result of repeated dehydration during polyphase metamorphism.  相似文献   

10.
Several petrographic studies have linked accessory monazite growth in pelitic schist to metamorphic reactions involving major rock‐forming minerals, but little attention has been paid to the control that bulk composition might have on these reactions. In this study we use chemographic projections and pseudosections to argue that discrepant monazite ages from the Mount Barren Group of the Albany–Fraser Orogen, Western Australia, reflect differing bulk compositions. A new Sensitive High‐mass Resolution Ion Microprobe (SHRIMP) U–Pb monazite age of 1027 ± 8 Ma for pelitic schist from the Mount Barren Group contrasts markedly with previously published SHRIMP U–Pb monazite and xenotime ages of c. 1200 Ma for the same area. All dated samples experienced identical metamorphic conditions, but preserve different mineral assemblages due to variable bulk composition. Monazite grains dated at c. 1200 Ma are from relatively magnesian rocks dominated by biotite, kyanite and/or staurolite, whilst c. 1027 Ma grains are from a ferroan rock dominated by garnet and staurolite. The latter monazite population is likely to have grown when staurolite was produced at the expense of garnet and chlorite, but this reaction was not intersected by more magnesian compositions, which are instead dominated by monazite that grew during an earlier, greenschist facies metamorphic event. These results imply that monazite ages from pelitic schist can vary depending on the bulk composition of the host rock. Samples containing both garnet and staurolite are the most likely to yield monazite ages that approximate the timing of peak metamorphism in amphibolite facies terranes. Samples too magnesian to ever grow garnet, or too iron‐rich to undergo garnet breakdown, are likely to yield older monazite, and the age difference can be significant in terranes with a polymetamorphic history.  相似文献   

11.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

12.
A combined geochronological, geochemical, and Nd isotopic study of felsic high-pressure granulites from the Snowbird Tectonic Zone, northern Saskatchewan, Canada, has been carried out through the application of integrated electron microprobe and isotope dilution thermal ionization mass spectrometry (ID-TIMS) techniques. The terrane investigated is a 400 km2 domain of garnet–kyanite–K–feldspar-bearing quartzofeldspathic gneisses. Monazite in these granulites preserves a complex growth history from 2.6 to 1.9 Ga, with well-armored, high Y and Th grains included in garnet yielding the oldest U–Pb dates at 2.62 to 2.59 Ga. In contrast, matrix grains and inclusions in garnet rims that are not well-armored are depleted in Y and Th, and display more complicated U–Pb systematics with multiple age domains ranging from 2.5 to 2.0 Ga. 1.9 Ga monazite occurs exclusively as matrix grains. Zircon is typically younger (2.58 to 2.55 Ga) than the oldest monazite. Sm–Nd isotope analysis of single monazite grains and whole rock samples indicate that inclusions of Archean monazite in garnet are similar in isotopic composition to the whole rock signature with a limited range of slightly negative initial Nd. In contrast, grains that contain a Paleoproterozoic component show more positive initial Nd, most simply interpreted as reflecting derivation from a source involving consumption of garnet and general depletion of HREE's. Our preferred interpretation is that the oldest monazite dates record igneous crystallization of the protolith. The ca. 2.55 Ga dates in zircon and monazite record an extensive melting event during which garnet and ternary feldspar formed. Very high-pressure (> 1.5 GPa) metamorphism during the Paleoproterozoic at 1.9 Ga produced kyanite from garnet breakdown, and resulted in limited growth of new monazite and zircon. In the case of monazite, this is likely due to the armoring and sequestration of early-formed monazite such that it could not participate in metamorphic reactions during the high-pressure event, as well as the depletion of the REE's due to melt loss following the early melting event.  相似文献   

13.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   

14.
Granulite facies cordierite–garnet–biotite gneisses from the southeastern Reynolds Range, central Australia, contain both orthopyroxene‐bearing and orthopyroxene‐free quartzofeldspathic leucosomes. Mineral reaction microstructures at the interface of gneiss and leucosome observed in outcrop and petrographically, reflect melt‐rock interaction during crystallization. Accessory monazite, susceptible to fluid alteration, dissolution and recrystallization at high temperature, is tested for its applicability to constrain the chemical and P–T–time evolution of melt‐rock reactions during crystallization upon cooling. Bulk rock geochemistry and phase equilibria modelling constrain peak pressure and temperature conditions to 6.5–7.5 kbar and ~850°C, and UPb geochronology constrains the timing of monazite crystallization to 1.55 Ga, coeval with the Chewings Orogeny. Modelling predicts the presence of up to 15 vol.% melt at peak metamorphic conditions. Upon cooling below 800°C, melt extraction and in situ crystallization of melt decrease the melt volume to less than 7%, at which time it becomes entrapped and melt pockets induce replacement reactions in the adjacent host rock. Replacement reactions of garnet, orthopyroxene and K‐feldspar liberate Y, REE, Eu and U in addition to Mg, Fe, Al, Si and K. We demonstrate that distinguishing between monazite varieties solely on the basis of U–Pb ages cannot solve the chronological order of events in this study, nor does it tie monazite to the evolution of melt or stability of rock‐forming minerals. Rather, we argue that analyses of various internal monazite textures, their composition and overprinting relations allow us to identify the chronology of events following the metamorphic peak. We infer that retrograde reactions involving garnet, orthopyroxene and K‐feldspar can be attributed to melt‐rock interaction subsequent to partial melting, which is reflected in the development of compositionally distinct monazite textural domains. Internal monazite textures and their composition are consistent with dissolution and precipitation reactions induced by a high‐T melt. Monazite rims enriched in Y, HREE, Eu and U indicate an increased availability of these elements, consistent with the breakdown of orthopyroxene, garnet and K‐feldspar observed petrographically. Our study indicates that compositional and textural analysis of monazite in relation to major rock‐forming minerals can be used to infer the post‐peak chemical evolution of partial melts during high‐ to ultrahigh‐temperature metamorphism.  相似文献   

15.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


16.
The Teplá Crystalline unit (TCU), western Bohemian Massif, proves highly suitable for studying the effects of differential metamorphic reworking on the U–Th–Pb systematics in monazite, as the overprint of Variscan regional metamorphism onto high-grade Cadomian paragneisses intensifies progressively towards the northwest. Although variably hampered by scarcity, small size, and low uranium contents of monazite, isotope dilution–thermal ionisation mass spectrometry of monazite from paragneisses from the garnet, staurolite, and kyanite zones of the TCU gives a narrow 206Pb/238U age range from 387 to 382 Ma for Variscan peak metamorphism. These data are supported by 382–373 Ma monazite ages derived from electron microprobe analyses. Inheritance of older components in grains from the central TCU imply major “resetting” of pre-Variscan monazite around 380 Ma, possibly due to widespread garnet growth during Variscan metamorphism, which led to the consumption of pre-Variscan high-Y monazite and subsequent growth of new low-Y monazite. Concordant 498–494 Ma monazite ages in a migmatitic paragneiss close to the adjacent Mariánské Lázně Complex (MLC) grew in response to metagabbro emplacement in the MLC from 503 to 496 Ma and not during either Cadomian or Variscan regional metamorphism. Backscatter imaging and electron microprobe analyses reveal that discordant monazite of the migmatite comprises a mix of various age domains that range from ca. 540 to 380 Ma. Combined evidence presented here suggests that instead of Pb loss by volume diffusion, the apparent resetting of the U–Th–Pb systematics in monazite rather involves new crystal growth or regrowth by recrystallisation and dissolution/reprecipitation.  相似文献   

17.
Abstract

Combined in situ monazite dating, mineral equilibria modelling and zircon U–Pb detrital zircon analysis provide insight into the pressure–temperature–time (PTt) evolution of the western Gawler Craton. In the Nawa Domain, pelitic and quartzo-feldspathic gneisses were deposited after ca 1760?Ma and record high-grade metamorphic conditions of ~7.5?kbar and 850?°C at ca 1730?Ma. Post-peak microstructures, including partial plagioclase coronae and late biotite around garnet, and subtle retrograde garnet compositional zoning, suggest that these rocks cooled along a shallow down-pressure trajectory across an elevated dry solidus. In the northwest Fowler Domain (Colona Block), monazite grains from pelitic gneisses record two stages of growth/recrystallisation interpreted to represent discrete parts of the P–T path: (1) ca 1710?Ma monazite growth during prograde to peak conditions, and (2) ca 1690?Ma Y-enriched monazite growth/recrystallisation during partial garnet breakdown and cooling towards the solidus. Relict prograde growth zoning in garnet suggests rocks underwent a steep up-P path to peak conditions of ~8?kbar at 800?°C. The new P–T–t results suggest basement rocks of the southwestern Nawa and northwestern Fowler were buried to depths of 20–25?km during the Kimban Orogeny, ca 10 Myrs after the sedimentary precursors were deposited. The P–T path for the Kimban Orogeny is broadly anti-clockwise, suggesting that at least the early phase of this event was associated with extension. Exhumation of rocks from both the southwestern Nawa and northwestern Fowler domains may have occurred during the waning stages of the Kimban Orogeny (<ca 1690?Ma). The limited low-grade overprint in these rocks may be explained by a mid-to-upper crustal position for these rocks during the subsequent Kararan Orogeny. Aluminous quartz-feldspathic gneiss of the Nundroo Block in the eastern Fowler Domain records peak conditions of ~7?kbar at 800?°C. Monazite grains from the Nundroo Block are dominated by an age peak at ca 1590?Ma, although the presence of some older ages up to ca 1690?Ma, possibly reflect partial resetting of older monazite domains. The PTt conditions suggest these rocks were buried to 20–25?km at ca 1590?Ma during the Kararan Orogeny. This high-grade metamorphism in the Nundroo Block is a mid-crustal expression of the same thermal anomaly that caused magmatism in the central-eastern Gawler Craton. Juxtaposition of rocks affected by the Kimban and Kararan orogenic events in the western Gawler Craton was controlled by lithospheric-scale shear zones, some of which have facilitated ~20 kilometres of exhumation.  相似文献   

18.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

19.
U-Pb geochronology of igneous zircon from rhyolitic host rocks to the Archean Kidd Creek, Geco and Winston Lake massive sulfide deposits, in the Superior Province of Ontario, shows that volcanism, which accompanied mineralization, occupied a narrow time span (2717±2 Ma, 2720±2 Ma and 2723±2 Ma, respectively). Precise ages of hydrothermal monazite, allanite and rutile from alteration zones surrounding the above deposits indicate that these minerals crystallized 40–70 million years after volcanism. Monazite from Kidd Creek mine is 2659±3 Ma old, in agreement with spatially associated 2664±25 Ma old rutile. Monazite from a biotite schist at Geoco mine gives a similar age of 2661±1 Ma. However, monazite from a sericite schist, which hosts the ore at Geco mine, is 2675±2 Ma old. Abraded large monazite grains from three units in the Winston Lake deposit are coeval with biotite crystallization and record an age of 2677±2 Ma, approximately the same as monazite in the sericite schist at Geco. Data points from allanite fractions from both the Winston Lake and Geco deposits fall on a Pb-Pb isochron that gives an age of 2672±5 Ma. Rutile from Winston Lake gives a younger age of 2651±6/-2 Ma and may date retrograde alteration of biotite to chlorite. The ca. 2676 Ma age of monazite from Winston Lake and in the sericite schist at Geco mine probably dates a regional metamorphic event that affected most of the southern Superior Province. The ca. 2660 Ma old monazite in the biotite schist at Geco mine and in the chlorite-sericite alteration at Kidd Creek may date later K-metasomatism caused by metamorphically derived fluids that were focussed along old fault structures. Such fluids were also responsible for local sulfide remobilization. Monazite and rutile are spatially associated with chlorite and sericite alterations at Kidd Creek. Their young ages indicate that these originally syngenetic mineral assemblages may have been significantly affected by regional metamorphism. Formation of monazite at all three deposits studied was a result of significant REE remobilization during metamorphism. The discrete character of syn-metamorphic hydrothermal activity in different units of the same deposit, as well as its synchroneity among different, widely separated deposits, requires a mechanism for episodic injection of heat and fluid into the crust on a regional scale. These activities are broadly coeval with, and probably related to, plutonism within adjacent metasedimentary subprovinces and middle to lower crustal metamorphism in the Superior Province.  相似文献   

20.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号