首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Delgo basement area of northern Sudan, low to medium grade metamorphosed volcanic, sedimentary and plutonic rocks are surrounded by high grade gneisses. A NNE-SSW trending suture zone can be defined by the lithological, chemical and structural characteristics of several distinct units. The early Proterozoic gneiss terrain is overlain by metasedimentary units, the metamorphism of which has been dated by the Sm-Nd whole rock-mineral technique (702 ± 27 Ma in the west, 592 ± 16 Ma in the east). In the central part, the Abu Sari volcanic rocks show geochemical signatures of formation at an arc, with a protracted tholeiitic, calc-alkaline and shoshonitic evolution. The overlying El Hamri ophiolite contains chemical features of a back-arc tectonic environments. The ophiolite was dated by the Sm-Nd whole rock method on metagabbros at 752 ± 48 Ma. The further extension of this oceanic basin into the Jebel Rahib in the south-west was dated at 707 ± 54 Ma (Sm-Nd whole rock and minerals).Widespread suite of syn-tectonic granitoid intrusives displays subduction-related characteristics. They where emplaced between 650 to 760 Ma (Pb-zircon evaporation method). Their Nd and Sr isotopic compositions indicate a changing pattern of island arc to active continental margin character along an east-west transect and suggest a west to north-west dipping subduction zone. All units were juxtaposed at the minimum age of 600 Ma and rearranged during an extensional event, which was dated by the Rb-Sr thin slab technique (546 ± 19 Ma) on a migmatite. The Delgo suture provides evidence of a complex terrane pattern in north-east Africa and crustal growth during the Pan-African event by the addition of oceanic material to pre-existing continental crust.  相似文献   

2.
A similar succession of Foliation Inflection/Intersection Axis (FIAs) trends preserved within porphyroblasts is present in two areas separated by 200 km along the Rocky Mountains. The Precambrian rocks in Central Colorado and Northern New Mexico were affected by deformation and metamorphism from ~1506 to 1366 Ma. A succession of five FIAs trending W–E, SSW–NNE, NNW–SSE, NW–SE and WSW–ENE is distinguished in Central Colorado and dated at 1506 ± 15 Ma, 1467 ± 23 Ma, 1425 ± 18 Ma, not dated and 1366 ± 20 Ma respectively. To the south in Northern New Mexico, a succession of five FIAs trending SSW–NNE, WNW–ESE, NNW–SSE, NW–SE and WSW–ENE is distinguished and dated at 1482 ± 48 Ma, 1448 ± 12 Ma, 1422 ± 35 Ma, not dated and 1394 ± 22 Ma. The excellent correlation of the sequence of FIA trends and their ages between regions reveals a sixfold‐FIA succession across the region with the first developed FIA set in Central Colorado not present in Northern New Mexico and the third FIA set in the region not present in Central Colorado. Preferential partitioning of W–E trending deformation into the Central Colorado region ~1506 ± 15 Ma was followed by SSW–NNE trending deformation that affected both regions at 1470 ± 20 Ma. However, preferential partitioning of WNW–ESE trending deformation into Northern New Mexico at 1448 ± 12 Ma left Central Colorado unaffected. Both regions were then affected by the three remaining periods of orogenesis, the first trending NNW–SSE at 1424 ± 15 Ma followed by one trending NW–SE that has not yet been dated, and then one trending WSW–ENE at 1390 ± 19 Ma. This suggests that the Yavapai terrane was tectonized at ~1506 Ma, prior to amalgamation with the Mazatzal terrane ~1470 Ma. Subsequent orogenesis was initially partitioned preferentially into the Mazatzal terrane, but the following three periods of tectonism affected both terranes in a similar manner.  相似文献   

3.
U/Pb zircon ages are reported for four ophiolites and three crosscutting arc-related plutons from the Norwegian Caledonides. Plagiogranite differentiated from gabbro of the Karmøy ophiolite is dated at 493+7/-4 Ma whereas arc-related trondhjemite cutting this ophiolite crystallized at 485+/–2 Ma. A crosscutting clinopyroxene-phyric gabbro intrusion is dated at 470+9/–5 Ma by near concordant magmatic titanite (sphene) and discordant U-rich (2903–6677 ppm) zircon. Lower intercepts of 247+/–68 and 191+/–70 Ma defined by the plagiogranite and clinopyroxene-phyric gabbro best-fit lines may reflect a real low-T alteration/rift-related event.A plagiogranite differentiate of the Gullfjellet ophiolite complex is dated at 489+/–3 Ma and a crosscutting arc-related tonalite is 482+6/–4 Ma. Both of these ages overlap with those of the correlative rocks at Karmøy suggesting that they are parts of one ophiolitic terrane with a common history.Trondhjemite associated with the Leka ophiolite is dated at 497+/–2 Ma, indicating that supra-subduction zone magmatism there may be coeval with spreading which formed the Karmøy axis sequence.The U/Pb zircon ages of Norwegian ophiolites reported here, combined with ages of other Appalachian-Caledonian ophiolite complexes in Britain and Canada, indicate a narrow age range for the generation of at least two marginal basins in the Tremadoc-Arenig. Two spreading episodes documented at Karmøy are separated in time by intrusion of arc-related trondhjemite magmas at 485+/–2 Ma and may correlate with two separate spreading events documented in other ophiolites.The Solund/Stavfjorden ophiolite, at 443+/–3 Ma, is the only late Ordovician ophiolite yet documented in the entire Appalachian-Caledonian Orogen and it probably represents a small, short-lived marginal basin late in the history of the Iapetus Ocean. It is correlative with Caradocian ensialic marginal basin magmatism in Wales and the Trondheim region, and with tholeiitic gabbro-diorite plutons that intruded Newfoundland ophiolites in a tensional regime after emplacement of the ophiolites over the continental margin.  相似文献   

4.
The Oman–United Arab Emirates ophiolite is the world’s largest ophiolite. It is divided into 12 separate fault-bounded blocks, of which the northern three lie wholly or partly in the United Arab Emirates. Extensive mapping has shown that the United Arab Emirates blocks contain mantle and crustal sections which correspond to the classic ‘Penrose conference’ ophiolite definition but which are cut by a voluminous later magmatic sequence including ultramafic, mafic and felsic components. Samples from the later magmatic sequence are dated at 96.4?±?0.3, 95.74?±?0.3 and 95.2?±?0.3 Ma; the early crustal section, which has not been dated directly, is thus constrained to be older than c. 96.4 Ma. Petrological evidence shows that the early crustal section formed at a spreading ridge, but the later magmatic sequence was formed from hydrous magmas that produced different mineral crystallisation sequences to normal mid-ocean ridge basalt (MORB). Mineral and whole-rock geochemical analyses show that the early crustal rocks are chemically similar to MORB, but the later magmatic sequence has chemical features typically found in supra-subduction zone (SSZ) settings. The ophiolite in the United Arab Emirates thus preserves clear evidence for two stages of magmatism, an early episode formed at a spreading centre and a later episode associated with the onset of subduction. Similar two-stage magmatism has been recognised in the Oman sector, but the United Arab Emirates contains the most voluminous SSZ magmatism yet described from this ophiolite.  相似文献   

5.
震旦系在北方的一个完整剖面   总被引:5,自引:3,他引:2  
<正> 前几年,辽东半岛南部(下称辽南)晚前寒武纪地层层序被认为是衔接青白口系与震旦系之间的过渡层。换言之,青白口系与震旦系之间有一段地层缺失,缺失的地层由辽南  相似文献   

6.
The East Qinling-Dabie molybdenum belt is part of a larger East-West trending metallogenic belt in eastern China. Most of the molybdenum deposits occur as porphyry or porphyry-skarn type, but there are also some vein type deposits. Following systematic Re-Os dating of molybdenite from 13 deposits and comparisons with two previously dated deposits, we have recognized that the molybdenum mineralization in the East Qinling-Dabie belt was developed during hydrothermal activity linked to magmatism and the emplacement of granitoid stocks. Three pulses of granitoid magmatism and Mo mineralization are recognized corresponding to significant tectonic events in the East Qinling-Dabie belt. Vein type deposits dated at 233-221 Ma were formed in detachment fractures, indicating localized extension within the collisional setting of the North China and Yangtze Cratons. I-type and transitional I- and S-type granites and related mineralization dated at 148-138 Ma may have formed part of a continental magmatic arc, with widespread magmatism and back-arc extension caused by subduction of the Izanagi or Paleopacific plate beneath the Eurasian continent in a WNW-ESE direction in the Late Jurassic-Early Cretaceous. Both S-type and transitional S- and I-type granite-associated porphyry molybdenum deposits dated at 131-112 Ma are part of an extensive mineralization event throughout East China that can be ascribed to regional large-scale lithospheric thinning, delamination and thermal erosion.  相似文献   

7.
K–Ar ages have been determined on micas and hornblendes in the basal metamorphic sequence and in metamorphic rocks squeezed into the mantle sequence of the Semail Ophiolite. The hornblende ages of 99±0.5 and 102±0.8 Ma and the 90 Ma ages of coexisting micas from the high-grade metamorphic portion of the sequence are interpreted as cooling stages following the peak of metamorphism (T 800–850° C, P 6.5–9 kbar). The new pressure estimates are based on findings of kyanite in garnet-amphibolite and cordierite in quartzitic rocks. These data indicate a cooling rate of 10–30° C/Ma. The oldest mica ages of 95±1 Ma are observed in the lowest-grade greenschists. These also largely represent cooling ages, but might in part also include formation ages. The pattern of the muscovite ages across the metamorphic sole indicates that the cooling front moved from the low-grade metamorphic zone, through the high-grade rocks and into the base of the overlying ophiolite. Radiometric ages of hornblendes (92.3±0.5 and 94.8±0.6 Ma) indicate that the crustal gabbro sequence cooled below 500° C later than the base of the ophiolite sequence. Metamorphism of the sole rocks occurred during subduction of oceanic sediments and volcanic or gabbroic rocks as they progressively came into contact with hotter zones at the base of the overriding plate. The peak of metamorphism must have been contemporaneous with the main magmatism in the Semail Ophiolite. One of the dated muscovites yields an age of 81.3±0.8 Ma, but this is related to discrete deformation zones that were active during late-stage emplacement of the ophiolite.  相似文献   

8.
We report the presence of a Grenvillian ophiolite on the northern margin of the Yangtze craton, drastically changing current ideas about South China's role in plate reconstructions of the Rodinia supercontinent. Strongly deformed amphibolites that locally show relict pillow lavas, isotropic and layered metagabbro, diabase dikes, serpentinized dunite and harzburgite with podiform chromite are dated at circa 1100–985 Ma (U–Pb zircon). The ophiolite is structurally dismembered and thrust over the Proterozoic shelf sequence that covers the north margin of the Yangtze craton, and overrode a flysch to conglomerate-wildflysch unit shed from the ophiolite and a magmatic arc terrane and deposited on the older Yangtze carbonate platform. The youngest clasts in the conglomerate are circa 861–813 Ma (U–Pb zircon), giving a maximum age for ophiolite emplacement. Fine-grained layered amphibolites exhibit slightly depleted-flat type REE curves with no obvious Eu anomalies, and are N-MORB type tholeiites. Metagabbro has typical cumulate textures, flat REE distributions and obvious positive Eu anomalies. The REE characteristics of serpentinized dunites show a U-shape of slight loss of middle REE, representing cumulates metasomatized by LREE slightly enriched mantle. All these features indicate that the metamafic–ultramafic rocks from the Proterozoic Miaowan Formation form a structurally dismembered ophiolite resting above an ophiolitic wildflysch, sitting on top of the Proterozoic shelf sequence on the Yangtze craton. The ophiolite is contemporaneous with an arc sequence preserved to the north on the edge of the Yangtze craton, suggesting that the entire ophiolitic forearc–arc was accreted to the Yangtze craton between 1000 and 850 Ma. Xenocrystic zircons in granite clasts in the basal wildflysch unit have ages consistent with Australian affinity, and detrital zircons in the arc sequence also show derivation from Australia, suggesting that the arc formed on the Australian segment of Rodinia before collision with the Yangtze craton. The discovery of the Proterozoic Miaowan ophiolite supplies important evidence for the existence of a Neoproterozoic oceanic basin on the north margin of the Yangtze craton, and demonstrates that the Yangtze craton first collided with Rodinia on its northern margin, with subsequent accretion of the Cathaysian block on the southern margin of the craton.  相似文献   

9.
The Mporokoso Group (formerly Plateau Series pro parte, redefined) is a sequence of fluvial, aeolian and lacustrine sedimentary rocks, consisting predominantly of sandstones with conglomerate, mudstone and tuff intercalations. The group overlies granites and volcanics of the crystalline basement of the Bangweulu Block in northern Zambia dated at ca. 1820 Ma, and is intruded by the Lusenga syenite dated at 1134 Ma. It was probably deposited during a period close to the older age limit. The source area of clastics was to the south of the sedimentary basin, and the Ubendian belt did not contribute sedimentary material to the Mporokoso Group, which is subdivided into four formations. The older subdivisions (Lower and Upper Plateau Series, and the Abercorn Sandstone) were established in a non-typical local area and cannot be followed across the whole basin, and their use is discontinued. Similarities of the Mporokoso Group and the coeval Waterberg Group of southern Africa are discussed. The sedimentary basins of both groups have a similar relation to centres of extrusive volcanism preceding subsidence.  相似文献   

10.
温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义   总被引:11,自引:5,他引:6  
温都尔庙群分布在内蒙古中部地区,分下部桑达来呼都格组和上部哈尔哈达组,通常被认为属于蛇绿岩套组合,形成时代也一直存在争论。详细的野外调查表明,温都尔庙群不完全是蛇绿岩组合,还发育洋内弧的玄武岩-玄武安山岩-安山岩组合。所以,温都尔庙群为一套包含大洋洋壳、洋内弧等不同时代和成因的增生杂岩。对温都尔庙群洋内弧变质安山岩及变质碎屑岩进行锆石LA-MC-ICPMS法U-Pb同位素测年表明:桑达来呼都格组上部洋内弧变质安山岩年龄为470±2Ma。哈尔哈达组两个样品(10NM142、10NM143)的碎屑锆石年龄主要集中在445~480Ma范围内,其中10NM143样品中最年轻谐和年龄多在424~438Ma之间,表明至少有一部分地层形成于中志留世。考虑温都尔庙群蛇绿岩形成时代(497~477Ma)、高压变质时代(446±15Ma~453±1.8Ma)及晚志留世西别河组不整合覆盖其上的事实,桑达来呼都格组可能形成于寒武纪-晚奥陶世,哈尔哈达组形成于晚奥陶世-中志留世。因此,温都尔庙群是形成于寒武纪-中志留世的变质增生杂岩。  相似文献   

11.
The Mayo Kebbi region in SW Chad is part of the NNE-SSW trending Neoproterozoic Central African Fold Belt (CAFB) and is made up of three calc-alkaline granitoid suites emplaced into a metavolcanic–metasedimentary sequence. The first suite is represented by mafic to intermediate rocks (gabbro-diorite and metadiorite) emplaced between 737 and 723 Ma during early Pan-African convergence. The second consists of the Mayo Kebbi batholith and includes tonalites, trondhjemites and granodiorites, emplaced during several magmatic pulses between 665 and 640 Ma. The third suite includes porphyritic granodiorite and hypersthene monzodiorite dated at ca. 570 Ma. The Mayo Kebbi domain extends southward into Cameroon and is interpreted as a middle Neoproterozoic arc stabilized at ca. 650 Ma. This study also revealed a diachronous evolution between Mayo Kebbi and western Cameroon (e.g., the Poli region). The overall evolution of this part of the CAFB is interpreted as the result of successive development of magmatic arcs, since ca. 740 Ma, and tectonic collage of three different domains (Adamawa-Yade, Mayo Kebbi, and West Cameroon) which, after suturing, were intruded by post-collisional granitoids (<600 Ma).  相似文献   

12.
The Tamvatnei ophiolite massif is located in the external part of the Koryak-Kamchatka accretionary orogen, within the limits of the Anadyr-Koryak Fold System (Late Cretaceous accretion), composed largely of complexes of enzymatic island arcs and backarc basins referred to the Jurassic-Early Neocomian. Lherzolite type ophiolites of the Tamvatnei massif, located in the harzburgite province of the Mainitsa and Algan-Velikorechenskii terranes and being a regional anomaly in terms of geological structure and rock composition, were not dated by paleontological methods. The geological data indicate only their pre-Senonian age of formation, and K-Ar datings for mafites by the rock bulk compositions cover nearly the whole Early Cretaceous. The isotope dating of ten accessory zircon grains from quartz diorite, which finished the formation of magnesian series of gabbro-diabases belonging to the Tamvatnei hypoabyssal ophiolite complex and that of magnesian andesites from the lower stratum of the volcanogenetic complex, yielded a concordant age of 138.9 ± 1.9 Ma. These results, as well as the previously acquired date for amphibole from amphibole microgabbro belonging to the hypoabyssal complex (120.0 ± 2.4 Ma; after P. U. Layer), indicate that Tamvatnei lherzolite-type ophiolites formed in the Valanginian-Aptian, i.e., later than the Late Mesozoic suprasubduction ophiolites from the adjacent Mainitsa and Algan terranes, whose volcanogenic-siliceous strata are dated at the Jurassic-Valanginian. The obtained results prove the model for Tamvatnei ophiolite generation in an introarc basin founded during breakup of the crust of the Mainitsa-Algan island-arc system.  相似文献   

13.
蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年   总被引:101,自引:2,他引:101  
文中简要评述了蛇绿岩的层状辉长岩,斜长岩和斜长花岗岩,以橄榄岩为主岩的花岗岩和蛇绿岩中的埃达克岩的锆石SHRIMP U-Pb年龄的地质意义。层状辉长岩(或堆晶层状辉长岩)通常起源于洋脊下的岩浆房,因而它的形成年龄代表洋壳形成的时代。斜长岩与层状辉长岩的时代相近或略晚。斜长花岗岩年龄的解释极其依赖锆石组成和地球化学证据。橄榄岩为主岩的花岗岩,可能记录蛇绿岩的侵位时代。蛇绿岩中的埃达克岩是消减洋壳在深部的部分熔融的产物。文中发表了新疆扎河坝蛇绿岩SHRIMP定年的中间成果,并简略地介绍了滇川西部金沙江和内蒙古图林凯等地的研究实例。根据层状辉长岩的测定结果,扎河坝蛇绿岩形成于(489±4)Ma,金沙江蛇绿岩形成于(328±8)Ma。内蒙古图林凯蛇绿岩中埃达克岩形成于(467±13)Ma~(429±7)Ma。块状辉长岩、斜长花岗岩和橄榄岩为主岩的花岗质岩石记录了蛇绿岩的复杂演化。新疆扎河坝蛇绿岩中的块状辉长岩中存在多组锆石年龄值。较老的一组为468~511 Ma,与层状辉长岩和斜长岩相似,记录了蛇绿岩或洋壳的形成时代,但是,岩石中的大部分锆石年龄为396~419 Ma,加权平均年龄为(406±4)Ma,可能反映了一次部分熔融事件。滇川西部金沙江蛇绿岩中的斜长花岗岩的形成年龄为约300~285Ma,晚于层状辉长岩和?  相似文献   

14.
Outcrop-based sequence stratigraphic analysis and palynological biofacies were used to define depositional sequences and their bounding surfaces, and build a sequence stratigraphic model for the Upper Cretaceous succession of the Afikpo Sub-basin. Four unconformity-bounded third-order depositional sequences were identified. Sequence 1 comprises the Nkporo Formation and is subdivided into lowstand system tract (LST) representing an incised valley fill and transgressive systems tract (TST) consisting of estuarine and marine shales and mudstones. The base of the sequence is an angular unconformity correlated to the 77.5 Ma sequence boundary (SB) and the maximum flooding surface (MFS) is dated at 76 Ma. Sequence 2 is diachronous and straddles the lithostratigraphic boundary of the Nkporo and Mamu formations. The upper SB is dated at 71 Ma while associated MFS is dated at 73.5 Ma. Sequence 3 consists of the upper Mamu Formation and the Ajali Formation. The upper SB of sequence 3 is at 68 Ma while the MFS is dated at 69.8 Ma. Sequence 4 is the topmost depositional sequence belonging to the Nsukka Formation. The upper SB is placed at 66.5 Ma. The MFS within this sequence is dated at 67.8 Ma. The sequences encompass from tidally influenced bay head delta and central estuarine environments to coastal and shallow marine shelf environments. Stratigraphic architecture and facies types show that sequence development was controlled to a great extent by eustatic sea level variations though differential subsidence rates encouraged differential rates of sediment supply and rates of sea level change along different segments of the shoreline.  相似文献   

15.
The Tuva-Mongolia Massif is a composite Precambrian terrane incorporated into the Palaeozoic Sayany-Baikalian belt. Its Neoproterozoic amalgamation history involves early (800 Ma) and late Baikalian (600–550 Ma) orogenic phases. Two palaeogeographic elements are identified in the early Baikalian stage — the Gargan microcontinent and the Dunzhugur oceanic arc. They are represented by the Gargan Glyba (Block) and the island-arc ophiolites overthrusting it. The Gargan Glyba is a two-layer platform comprising an Early Precambrian crystalline basement and a Neoproterozoic passive-margin sedimentary cover. The upper part comprises olistostromes deposited in a foreland basin during the early Baikalian orogeny. The Dunzhugur arc ophiolite form klippen fringing the Gargan Glyba, and show a comprehensive oceanic-arc ophiolite succession. The Dunzhugur arc faced the microcontinent, as shown by the occurrence of forearc complexes. The arc–continent collision followed a pattern similar to Phanerozoic collisions. When the marginal basin lithosphere had been completely subducted, the microcontinental edge partially underthrust the arc, and the forearc ophiolite overrode it. Continued convergence caused a break of the arc lithosphere resulting in the uplift of the submerged microcontinental margin with the overthrust forearc ophiolites sliding into the foreland basin. Owing to the lithospheric break, a new subduction zone, inclined beneath the Gargan microcontinent, emerged. Initial melts of the newly-formed continental arc are represented by tonalites intruded into the Gargan microcontinent basement and its cover, and into the ophiolite nappe. The tonalite Rb–Sr mineral isochron age is 812±18 Ma, which is similar to a U–Pb zircon age of 785±11 Ma. A period of tonalite magmatism in Meso–Cenozoic orogenic belts is recognized some 1–10 m.y. after the collision. Accordingly, the Dunzhugur island arc–Gargan microcontinent collision is conventionally dated at around 800 Ma. It is highly probable that in the early Neoproterozoic, the Gargan continental block was part of the southern (in modern coordinates) margin of the Siberia craton. It is suggested that a chain of Precambrian massifs represents an elongate block separated from Siberia in the late Neoproterozoic. The Tuva-Mongolia Massif is situated in the northwest part of this chain. These events occurred on the NE Neoproterozoic margin of Rodinia, facing the World Ocean.  相似文献   

16.
闽西南玮埔岩体和赣南菖蒲混合岩锆石La ICPMS U-Pb年代学   总被引:3,自引:0,他引:3  
闽西玮埔岩体和赣南菖蒲混合岩位于武夷山构造带南部地区。对NNE向展布的闽西玮埔岩体两个样品进行了锆石LaICPMS U-Pb 测年,获得的年龄为447.1±4.7Ma和440.8±3.4Ma,证明这个岩体不是原来认为的印支期花岗岩,而属于加里东岩体。赣南菖蒲混合岩发育于罗浮岩体的北侧,早期将罗浮岩体归于燕山早期岩体。对混合岩进行的锆石LaICPMS U-Pb 测年,获得的年龄为445.9±3.8Ma,确定这个岩体为加里东期。这些新的高精度年龄学数据为武夷山加里东构造运动时限和性质提供了精确约束。  相似文献   

17.
We present new,geological,metamorphic,geochemical and geochronological data on the East Anatolian-Lesser Caucasus ophiolites.These data are used in combination with a synthesis of previous data and numerical modelling to unravel the tectonic emplacement of ophiolites in this region.All these data allow the reconstruction of a large obducted ophiolite nappe,thrusted for>100 km and up to 250 km on the Anatolian-Armenian block.The ophiolite petrology shows three distinct magmatic series,highlighted by new isotopic and trace element data:(1)The main Early Jurassic Tholeiites(ophiolite s.s.)bear LILEenriched,subduction-modified,MORB chemical composition.Geology and petrology of the Tholeiite series substantiates a slow-spreading oceanic environment in a time spanning from the Late Triassic to the Middle-Late Jurassic.Serpentinites,gabbros and plagiogranites were exhumed by normal faults,and covered by radiolarites,while minor volumes of pillow-lava flows infilled the rift grabens.Tendency towards a subduction-modified geochemical signature suggests emplacement in a marginal basin above a subduction zone.(2)Late Early Cretaceous alkaline lavas conformably emplaced on top of the ophiolite.They have an OIB affinity.These lavas are featured by large pillow lavas interbedded a carbonate matrix.They show evidence for a large-scale OIB plume activity,which occurred prior to ophiolite obduction.(3)Early-Late Cretaceous calc-alkaline lavas and dykes.These magmatic rocks are found on top of the obducted nappe,above the post-obduction erosion level.This series shows similar Sr-Nd isotopic features as the Alkaline series,though having a clear supra-subduction affinity.They are thus interpreted to be the remelting product of a mantle previously contaminated by the OIB plume.Correlation of data from the Lesser Caucasus to western Anatolia shows a progression from back-arc to arc and fore-arc,which highlight a dissymmetry in the obducted oceanic lithosphere from East to West.The metamorphic P-T-t paths of the obduction sole lithologies define a southward propagation of the ophiolite:(1)P-T-t data from the northern Sevan-Akera suture zone(Armenia)highlight the presence and exhumation of eclogites(1.85±0.02 GPa and 590±5℃)and blueschists below the ophiolite,which are dated at ca.94 Ma by Ar-Ar on phengite.(2)Neighbouring Amasia(Armenia)garnet amphibolites indicate metamorphic peak conditions of 0.65±0.05 GPa and 600±20 C with a U-Pb on rutile age of 90.2±5.2 Ma and Ar-Ar on amphibole and phengite ages of 90.8±3.0 Ma and 90.8±1.2 Ma,respectively.These data are consistent with palaeontological dating of sediment deposits directly under(Cenomanian,i.e.>93.9 Ma)or sealing(Coniacian-Santonian,i.e.,≤89.8 Ma),the obduction.(3)At Hinis(NE Turkey)PT-t conditions on amphibolites(0.66±0.06 GPa and 660±20℃,with a U-Pb titanite age of80.0±3.2 Ma)agree with previous P-T-t data on granulites,and highlight a rapid exhumation below a top-to-the-North detachment sealed by the Early Maastrichtian unconformity(ca.70.6 Ma).Amphibolites are cross-cut by monzonites dated by U-Pb on titanite at 78.3±3.7 Ma.We propose that the HT-MP metamorphism was coeval with the monzonites,about 10 Ma after the obduction,and was triggered by the onset of subduction South of the Anatolides and by reactivation or acceleration of the subduction below the Pontides-Eurasian margin.Numerical modelling accounts for the obduction of an"old"~80 Myr oceanic lithosphere due to a significant heating of oceanic lithosphere through mantle upwelling,which increased the oceanic lithosphere buoyancy.The long-distance transport of a currently thin section of ophiolites(<1 km)onto the Anatolian continental margin is ascribed to a combination of northward mantle extensional thinning of the obducted oceanic lithosphere by the Hinis detachment at ca.80 Ma,and southward gravitational propagation of the ophiolite nappe onto its foreland basin.  相似文献   

18.
隆务峡蛇绿岩位于青海省同仁县,大地构造位置处于西秦岭和南祁连造山带的结合部位。蛇绿岩年代学对于研究造山带构造演化和恢复古洋-陆板块构造格局至关重要。对隆务峡蛇绿岩中的辉长岩进行了LA-ICP-MS锆石U-Pb定年,206Pb/238U加权平均年龄为250.1Ma±2.2Ma(MSWD=0.7),代表了辉长岩的结晶年龄,表明隆务峡蛇绿岩是晚二叠世—早三叠世西秦岭与南祁连之间古洋盆扩张过程中岩浆活动的产物。而呈岩株侵入到蛇绿岩中的花岗闪长岩的年龄(244Ma±1.4Ma)晚于蛇绿岩中辉长岩的年龄,但早于区域上大量存在的印支期花岗岩,可能记录了蛇绿岩的侵位时代。  相似文献   

19.
Gnos  Khan  Mahmood  Khan  Khan  & Villa 《地学学报》1998,10(2):90-95
The Bela ophiolite of Pakistan contains a complete ophiolite-accretionary wedge-trench sequence emplaced onto the Indian continental margin during the northward drift of India-Seychelles over the active Réunion hotspot. A structurally higher ophiolite overlies an accretionary prism, which is thrust over a foreland basin. Shear-sense determinations in peridotite mylonites in the ophiolite footwall and imbrication structures in the underlying accretionary wedge indicate an ESE emplacement. Sedimentary rocks in the accretionary wedge indicate Aptian-Albian pillow lavas, initially deep water conditions, and increasing influence from the continent until the Maastrichtian. The ophiolite emplacement was predated and accompanied by Fe-tholeiitic and alkaline magmatism related to the Réunion hotspot and continuous incorporation of trench sediments into the accretionary wedge. 39Ar/40Ar dating shows that the ophiolite formed around 70 Ma. Intraoceanic subduction initiated between 70 and 65 Ma, obduction onto the Indian passive margin occurred during the formation of the Deccan traps at ≈ 66 Ma, and final thrusting onto the continental margin ended in the early Eocene (≈ 50 Ma). The ophiolite emplacement occurred during the counterclockwise separation of Madagascar and India-Seychelles which caused shortening and consumption of oceanic lithosphere between the African-Arabian and the Indian-Seychelles plates.  相似文献   

20.
西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义   总被引:6,自引:1,他引:5  
对雅鲁藏布江缝合带中段群让蛇绿岩中的辉长岩进行SHRIMP锆石U-Pb定年,得出加权平均年龄为125.6±0.88Ma(2σ,MSWD=1.9),即辉长岩结晶年龄。结合已有的关于雅鲁藏布江蛇绿岩形成年龄的报道,该结果表明群让地区特提斯洋海底扩张的时代与中段大竹卡、吉定地区一致;雅鲁藏布江西段与中段地区洋盆形成时代一致,但晚于东段发育时代;整个东特提斯洋盆发育时代存在东早西晚的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号