首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

2.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

3.
Apatite fission-track (AFT) dating applied to uplifted Variscan basement blocks of the Bavarian Forest is employed to unravel the low-temperature history of this segment of the Bohemian Massif. Twenty samples were dated and confined track lengths of four samples were measured. Most samples define Cretaceous APT ages between 110 and 82 Ma (Albian to Campanian) and three samples give older ~148–140 Ma (Jurassic–Cretaceous boundary) ages. No discernible regional age variations exist between the areas north-east and south-west of the Pfahl shear zone, but >500 m post-Jurassic and post-Cretaceous vertical offsets along this and other faults can be inferred from elevation profile analyses. The AFT ages clearly postdate the Variscan exhumation history of the Bavarian Forest. Thermal modeling reveals that the ages are best explained by a slight reheating of the basement rocks to temperatures within the apatite partial annealing zone during the middle and late Jurassic and/or by late Cretaceous marine transgression causing burial heating, which affected marginal low-lying areas of the Bohemian Massif and the Bavarian Forest. Late Jurassic period was followed by enhanced cooling through the 120–60 °C temperature interval during the subsequent exhumation phase for which denudation rates of ~100 m myr?1 were calculated. On a regional scale, Jurassic–Cretaceous AFT ages are ubiquitous in marginal structural blocks of the Bohemian Massif and seem to reflect the exhumation of these zones more distinctly compared to central parts.  相似文献   

4.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

5.
New thermochronological analyses of granites from the Malay Peninsula record the region’s thermal history during the Late Mesozoic and Cenozoic. 40Ar/39Ar and (U–Th–Sm)/He analyses are combined with existing fission track data to provide a comprehensive set of temperature and time data. Fully and partially reset K-feldspar and biotite mica 40Ar/39Ar analyses indicate a significant period of thermal perturbation between ∼100 and ∼90 Ma, and a second lesser perturbation between ∼51 and ∼43 Ma. Zircon (U–Th–Sm)/He analyses and existing fission track data indicate exhumation of the Malay Peninsula in the Cretaceous, and renewed, localised exhumation in the early Paleogene. Apatite (U–Th–Sm)/He and fission track data indicate rapid exhumation of the region in the Late Eocene and Oligocene. Late Cretaceous tectonism is linked to the reversal of a regional dynamic topographic low following the cessation of subduction along the Sundaland margin in the Late Cretaceous, causing regional uplift and exhumation and the addition of significant heat into the crust via mantle upwelling. Early Paleogene exhumation may reflect the continuation of Cretaceous tectonism or a discrete phase of Paleocene exhumation linked to localised transpressional tectonics. Eocene tectonism is coincident with major subsidence offshore of the Malay Peninsula, interpreted to reflect regional block faulting in response to north–south compression driven by the resumption of subduction along the southern margin of Sundaland in the Eocene.  相似文献   

6.
New zircon and apatite fission-track (FT) data, including apatite thermal modelling, are combined with an extensive literature survey and reconnaissance-type structural fieldwork in the Eastern Apuseni Mountains. This leads to a better understanding of the complex structural and thermal history of a key area at the boundary between two megatectonic units in the Balkan peninsula, namely the Tisza and Dacia Mega-Units. Following Late Jurassic obduction of the Transylvanian ophiolites onto a part of the Dacia Mega-Unit, that is, the Biharia nappe system, both units were buried to a minimum of 8 km during late Early Cretaceous times when these units were underthrust below the Tisza Mega-Unit consisting of the present-day Codru and Bihor nappe systems. Tisza formed the upper plate during Early Cretaceous (‘Austrian’) east-facing orogeny. Turonian to Campanian zircon FT cooling ages (95–71 Ma) from the Bihor and Codru nappe systems and the Biharia and Baia de Arie? nappes (at present the structurally lowest part of the Dacia Mega-Unit) record exhumation that immediately followed a second Cretaceous-age (i.e. Turonian) orogenic event. Thrusting during this overprinting event was NW-facing and led to the overall geometry of the present-day nappe stack in the Apuseni Mountains. Zircon FT ages, combined with thermal modelling of the apatite FT data, show relatively rapid post-tectonic cooling induced by a third shortening pulse during the latest Cretaceous (‘Laramian’ phase), followed by slower cooling across the 120°–60 °C temperature interval during latest Cretaceous to earliest Paleogene times (75–60 Ma). Cenozoic-age slow cooling (60–40 Ma) was probably related to erosional denudation postdating ‘Laramian’ large-scale updoming.  相似文献   

7.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

8.
The apatite fission track (AFT) ages and thermal modeling of the Longshoushan and deformation along the northern Hexi Corridor on the northern side of the Qinghai-Tibetan Plateau show that the Longshoushan along the northern corridor had experienced important multi-stage exhumations during the Late Mesozoic and Cenozoic. The AFT ages of 7 samples range from 31.9 Ma to 111.8 Ma. Thermal modeling of the AFT ages of the samples shows that the Longshoushan experienced significant exhumation during the Late Cretaceous to the Early Cenozoic (~130–25 Ma). The Late Cretaceous exhumation of the Longshoushan may have resulted from the continuous compression between the Lhasa and Qiangtang blocks and the flat slab subduction of the Neo-Tethys oceanic plate, which affected wide regions across the Qinghai-Tibetan Plateau. During the Early Cenozoic, the Longshoushan still experienced exhumation, but this process was caused by the Indian-Eurasian collision. Since this time, the Longshoushan was in a stable stage for approximately 20 Ma and experienced erosion. Since ~5 Ma, obvious tectonic deformation occurred along the entire northern Hexi Corridor, which has also been reported from the peripheral regions of the Qinghai-Tibetan Plateau, especially in the Qilianshan and northeastern margin of the plateau. The AFT ages and the Late Cenozoic deformation of the northern Hexi Corridor all indicate that the present northern boundary of the Qinghai-Tibetan Plateau is situated along the northern Hexi Corridor.  相似文献   

9.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

10.
Northern Svalbard represents a basement high surrounded by the Norwegian‐Greenland Sea/Fram Strait, Eurasian Basin, the Barents Shelf and the onshore Central Tertiary Basin (CTB). Published apatite fission track (AFT) data indicate Mesozoic differential, fault‐controlled uplift and exhumation of the region. Thermal history modelling of published and new AFT and (U–Th–Sm)/He ages of 51–153 Ma in the context of regional stratigraphy and geomorphology implies at least two, possibly three, uplift and exhumation stages since late Mesozoic, separated by episodes of subsidence and sediment deposition. Late Cretaceous/Palaeocene exhumation and subsequent burial appear to be related with the transition of compressional to transpressional collision of Svalbard and Greenland during the Eurekan Orogeny. Renewed exhumation since the Oligocene probably results from passive margin formation after the separation of Svalbard and Greenland, when a new offshore sedimentary basin opened west of Svalbard. Final uplift since the Miocene eventually re‐exposed the palaeosurface of northern Svalbard.  相似文献   

11.
The low-relief summit plateaus (high plains) of the Southeastern Highlands are remnants of a widespread peneplain that was initially uplifted in the mid-Cretaceous and reached its current elevation in the Miocene–Pliocene. There are two mutually exclusive scenarios for the origin of the high plains: an uplifted peneplain originally formed by long-term denudation through the Mesozoic and late Paleozoic, contrasting with creation by ~1.5 km of erosion following the mid-Cretaceous uplift (based on fission track data). The hypothesis of a Mesozoic peneplain is consistent with the low relief of the high plains, the ca 200 Ma available to form the peneplain, and the pre-late Mesozoic oxygen-isotope composition of secondary kaolinites in weathering profiles on the high plains. If the ca 30 Ma cooling event recorded by the fission track data is due to ~1.5 km of denudation, then the high plains peneplain formed in the Late Cretaceous–early Paleogene, close to sea-level, and was uplifted in the early Paleogene, because evidence from basalts and fossil floras shows that the high plains surface was moderately elevated in the Eocene. This scenario is difficult to reconcile with the long-term erosion necessary to form such an extensive peneplain, the lack of sedimentary evidence for early Paleogene uplift, and the relatively small reduction in elevation (~250 m) that would have resulted from ~1.5 km of erosion (because the crust in this area is in isostatic equilibrium). Furthermore, extensive Cretaceous–early Paleogene denudation should have removed the pre-late Mesozoic secondary kaolinites present in weathering profiles in the highlands. There is no evidence that the Mesozoic peneplain was buried by kilometres of sediment and then exhumed in the Cretaceous–early Paleogene. I therefore conclude that the high plains of the Southeastern Highlands are the remnants of a Mesozoic peneplain uplifted in the mid-Cretaceous and again in the Miocene–Pliocene.  相似文献   

12.
The Sierra de Pie de Palo located between 67°30′–68°30′ W and 31°00′–32°00′ S in the Argentine Western Sierras Pampeanas in Argentina is a distinct basement range, which lacks thermochronological data deciphering its exhumation and uplift history below 200 °C. Integrated cooling histories constrained by apatite fission-track data as well as (U–Th)/He measurements of zircon and apatite reveal that the structural evolution of this mountain range commenced during the Late Paleozoic and was mainly controlled by tectonically triggered erosion. Following further erosional controlled exhumation in a more or less extensional regime during the Mesozoic, the modern topography was generated by denudation in the Paleogene during the early stage of the Andean deformation, whereupon deformation propagated towards the west since the Late Mesozoic to Paleogene. This evolution is characterised by a total of 3.7–4.2 km vertical rock uplift and by 1.7–2.2 km exhumation with a rate of 0.03–0.04 mm/a within the Sierra de Pie de Palo since ca. 60 Ma. Onset of uplift of peak level is also referred to that time resulting in a less Pliocene amount of uplift than previously assumed.  相似文献   

13.
Zircon (ZFT) and apatite (AFT) fission-track low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the breakup of southwestern Gondwana. The thermochronological data obtained from samples of both the Precambrian basement and the Paleogene to Neogene sedimentary rocks from the continental rift of southeastern Brazil provided ZFT ages between 148 (15) and 64 (6) Ma, and AFT ages of 81 (8)–29 (3) Ma. These data clearly indicate syn- and post-rift reactivations during the Early Cretaceous, with great emphasis on Paleogene to Neogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin can be described in three main phases related to the rift to post-rift evolution of SE Brazil. In general, ZFT and AFT data yield spread values that become younger as samples are closer to the reactivated Neoproterozoic shear zones and might reflect source area exhumation. The analysis of ZFT and AFT data allowed interpretations regarding the main phases that occurred in the study area related to the thermotectonic and tectono-stratigraphic evolution in southeastern Brazil.  相似文献   

14.
This study uses zircon and apatite fission‐track (FT) analyses to reveal the exhumation history of the granitoid samples collected from the Lesser Hinggan Mountains, northeast China. A southeast to northwest transect across the Lesser Hinggan Mountains yielded zircon FT ages between 89.8 ± 5.7 and 100.4 ± 8.6 Ma, and apatite FT ages between 50.6 ± 13.8 and 74.3 ± 4.5 Ma with mean track lengths between 11.7 ± 2.0 and 12.8 ± 1.7 µm. FT results and modelling identify three stages in sample cooling history spanning the late Mesozoic and Cenozoic eras. Stage one records rapid cooling from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (∼210–110 °C) during ca. 95 to 65 Ma. Stage two records a period of relative slow cooling (∼110–60 °C) taking place between ca. 65 and 20 Ma, suggesting that the granitoids had been exhumed to the depth of ∼1−2 km. Final stage cooling (60–20 °C) occurred since the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. The maximum exhumation is more than 5 km under a steady‐state geothermal gradient of 35 °C/km. Integrated with the tectonic setting, this exhumation is possibly led by the Pacific Plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   

16.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   

17.
《Gondwana Research》2014,26(4):1644-1659
The formation of a series of intermountain basins is likely to indicate a geodynamic transition, especially in the case of such basins within the central South China Block (CSCB). Determining whether or not these numerous intermountain basins represent a division of the Cretaceous Pan-Yangtze Basin by exhumation of Xuefeng Mountains, is key to understanding the late Mesozoic to early Cenozoic tectonics of the South China Block (SCB). Here we present apatite fission track (AFT) data and time–temperature modeling in order to reconstruct the evolution history of the Pan-Yangtze Basin. Fourteen rock samples were taken from a NE–SW-trending mountain–basin system within the CSCB, including, from west to east, the Wuling Mountains (Wuling Shan), the south and north Mayang basins, the Xuefeng Mountains (Xuefeng Shan) and the Hengyang Basin. Cretaceous lacustrine sequences are well preserved in the south and north Mayang and Hengyang basins, and sporadically crop out in the Xuefeng Mountains, whereas Paleogene piedmont proluvial–lacustrine sequences are only found in the south Mayang and Hengyang basins. AFT results indicate that the Wuling and Xuefeng mountains underwent rapid denudation post-84 Ma, whereas the south and north Mayang basins were more slowly uplifted from 67 and 84 Ma, respectively. Following a quiescent period from 32 to 19 Ma, both the mountains and basins have been rapidly denuded since 19 Ma. Both the AFT data and sedimentary facies changes suggest that the Cretaceous deposits that cover the south–north Mayang and Hengyang basins through to the Xuefeng Mountains define the Cretaceous Pan-Yangtze Basin. Integrating our results with tectonic background for the SCB, we propose that rollback subduction of the paleo-Pacific Plate produced the Pan-Yangtze Basin, which was divided into the south–north Mayang and Hengyang basins by the abrupt uplift and exhumation of the Xuefeng Mountains from 84 Ma to present, apart from a period of tectonic inactivity from 32 to 19 Ma. This late Late Cretaceous to Paleogene denudation resulted from movement on the Ziluo strike–slip fault, which formed due to intra-continental compression most likely associated with the Eurasia–Indian plate subduction and collision. Sinistral transpression along the Ailao Shan–Red River Fault at 34–17 Ma probably transformed this compression to the extrusion of the Indochina Block, and produced the quiescent window period from 32 to 19 Ma for the mountain–basin system in the CSCB. Therefore, the initiation of exhumation of the Xuefeng Mountains at 84 Ma indicates a switch in tectonic regime from Cretaceous extension to late Late Cretaceous and Cenozoic compression.  相似文献   

18.
恢复湘鄂西褶皱带中-新生代以来的剥蚀历史, 探讨其变形的时空格架, 对于研究陆内褶皱造山以及指导该地区的油气勘探具有重要的意义.利用该地区磷灰石样品进行裂变径迹年龄测定与热史模拟, 对中-新生代的剥蚀厚度和速率进行分析.结果表明, 湘鄂西地区磷灰石裂变径迹的年龄为71~100 Ma, 与川东隔挡式褶皱带中的磷灰石样品年龄进行对比, 具有由SE到NW向递进变新的趋势; 中新生代以来的热史呈现出"三段式"的特征, 这3个阶段的转折时期为115~90 Ma和35~20 Ma, 分别对应了从晚侏罗世-早白垩世挤压造山到晚白垩世伸展成盆再到新生代整体抬升的构造转换; 燕山期为湘鄂西褶皱带的主变形期, 变形时序呈现出由SE到NW向递进变新的趋势, 剥蚀程度呈现出由SE到NW向变弱的趋势.这些认识为燕山期湘鄂西-川东褶皱带陆内递进变形的形成演化研究提供了有力的证据.   相似文献   

19.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

20.
The Shi-Hang Belt is a Mesozoic tectonic zone and has always been regarded as the boundary between the Yangtze and Cathaysia blocks. It occupies a key tectonic location and attracts considerable attention due to its dynamic formation mechanism. However, its Cenozoic dynamic process is poorly constrained. The Cenozoic activation of the Shi-Hang Belt, as well as its cooling and exhumation, aids in dating the onset time of the formation of the mountain ranges and reveals the deformation process of the South China Block. To uncover the history of its Cenozoic cooling and denudation, apatite fission-track (AFT) thermochronology was applied to batholiths and strata spread across the Shi-Hang Belt in the Hunan Province. Twenty-three samples are dated with ages ranging from 23.6 ± 1.5 to 45.8 ± 3.0 Ma. Except for two older ages (42.1 ± 2.6 and 45.8 ± 3.0 Ma), the other ages range from 23 to 36 Ma with less variation on both sides of the Chenzhou–Linwu fault. The thermochronological modelling of 15 measured samples demonstrates that rocks rapidly passed through the AFT partial annealing zone to the near surface at different onset times from 36 to 23 Ma. The regional AFT cooling pattern is unrelated to the internal structures of the Shi-Hang Belt characterized by a Mesozoic fold-thrust feature. We attribute the Cenozoic exhumation of the Shi-Hang Belt to the dynamic topography of the South China Block, which is related to mantle downwellings and upwellings due to several episodes of quick subduction of the Pacific Plate underneath Eurasia during the Late Cretaceous–early Cenozoic and the Oligocene–early Miocene. The far-field effect of the India–Tibet collision may have contributed to the exhumation of the Shi-Hang Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号