首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study on semi-brittle and plastic rheology of Panzhihua gabbro   总被引:10,自引:0,他引:10  
Rheological properties of the crust and upper mantle are essential data that are needed in modelling the mechanical behaviour of the shallow part of the earth. The importance of such data has been seen in discussions about the strength profile of continen…  相似文献   

2.
Cracks play a very important role in many geotechnical issues and in a number of processes in the Earth’s crust. Elastic waves can be used as a remote sensing tool for determining crack density. The effect of varying crack density in crystalline rock on the P- and S-wave velocity and dynamic elastic properties under confining pressure has been quantified. The evolution of P- and S-wave velocity were monitored as a suite of dry Westerly granite samples were taken to 60, 70, 80 and 90 % of the unconfined uniaxial strength of the sample. The damaged samples were then subjected to hydrostatic confining pressure from 2 MPa to 200 MPa to quantify the effect of varying crack density on the P- and S-wave velocity and elastic properties under confining pressure. The opening and propagation of microcracks predominantly parallel to the loading direction during uniaxial loading caused a 0.5 and 6.3 % decrease in the P- and S-wave velocity, respectively. During hydrostatic loading, microcracks are closed at 130 MPa confining pressure. At lower pressures the amount of crack damage in the samples has a small but measureable effect. We observed a systematic 6 and 4 % reduction in P- and S-wave velocity, respectively, due to an increase in the fracture density at 2 MPa confining pressure. The overall reduction in the P- and S-wave velocity decreased to 2 and 1 %, respectively, at 50 MPa. The elastic wave velocities of samples that have a greater amount of microcrack damage are more sensitive to pressure. Effective medium modelling was used to invert elastic wave velocities and infer crack density evolution. Comparing the crack density results with experimental data on Westerly granite samples shows that the effective medium modelling used gave interpretable and reasonable results. Changes in crack density can be interpreted as closure or opening of cracks and crack growth.  相似文献   

3.
Compression wave velocityV p has been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population from the Harqin area of the Inner Mongolia Autonomous Region (for short Inner Mongolia) as an aid to interpretingin-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1 000 MPa and temperatures ranging from 20 to around 1 300°C, using the ultrasonic transmission technique. After corrections for estimatedin situ crustal pressures and temperatures, elastic wave velocities range from 6.5 to 7.4 km·s?1, indicating that they are components of the Early Mesozoic crust-mantle transitional zone. Combining with previous experimental data, we have also reestablished the Early-Mesozoic continental compression velocity profile and compared it with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity pattern of the extensional tectonic area, providing new clues to the Mesozoic continental structure of the North China Craton.  相似文献   

4.
Most, if not all, magmas contain gas bubbles at depth before they erupt. Those bubbles play a crucial role in eruption dynamics, by allowing magma to degas, which causes the magma to accelerate as it ascends towards the surface. There must be a limit to that acceleration, however, because gas bubbles cannot grow infinitely fast. To explore that limit, a series of experiments was undertaken to determine the maximum rate at which bubbly high-silica rhyolite can decompress. Rhyolite melt that was hydrated at 150 MPa with ~5.3 wt.% dissolved water and contained 7 to 18 vol.% bubbles can degas in equilibrium at 875°C when decompressed at rates up to 1.2 MPa s−1 from 150 to 78 MPa, and up to 1.8 MPa s−1 when decompressed further to 42 MPa. In contrast, that same rhyolite cannot degas in equilibrium at 750°C if decompressed faster than 0.015–0.025 MPa s−1. When combined with other published experiments, the maximum rate of decompression for equilibrium degassing is found to increase by a factor of ten for every 50–75°C increase in temperature. When compared to predictions from conduit flow models that assume equilibrium degassing, it is found that such models greatly over-estimate the rate at which relatively cold rhyolite can decompress, whereas that assumption is largely correct for hot rhyolite, and thus for most other magmas, all of which are less viscous than rhyolite. In addition, most bubbles that were 20–30 μm in size at high pressure were lost from the population at low pressure. That absence suggests that only relatively large vesicles seen in volcanic pumice may be relics of pre-eruptive bubbles, even if small bubbles were originally present at depth.  相似文献   

5.
Ultrahigh-pressure (UHP) eclogites often show strong plastic deformation and anisotropy of seismic properties. We report in this paper the seismic velocity and anisotropy of eclogite calculated from the crystallographic preferred orientations (CPOs) of constituent minerals (garnet, omphacite, quartz and rutile) and single crystal elastic properties. We also compared the calculated results with the measured results in similar eclogites. Our results suggest that (1) Except that garnet is a seismically quasi-isotropic mineral, omphacite, quartz, coesite and rutile all have strong seismic anisotropies (AVp = 23.0%―40.9%, Max. AVs = 18.5%―47.1%). They are the major sources for anisotropy in eclogite. The average seismic velocities are fast in garnet and rutile, moderate in omphacite and coesite, and slow in quartz. (2) The deformed eclogites have the maximum Vp (8.33―8.75 km/s) approximately parallel to foliation and lineation, the minimum Vp (8.25―8.62 km/s) approximately normal to foliation and lineation and the Vp anisotropies of 1.0―1.7%. Their Vs are 4.93―4.97 km/s. The corresponding maximum anisotropies (0.73%―1.78%) of Vs are at 45° to both foliation and lineation and the minimum anisotropies at positions normal to lineation on the foliation plane. The Vs1 polarization planes are approximately parallel to foliation. The mean Vp and Vs of eclogite under UHP peak metamorphism conditions (P = 3―5 GPa, T = 900―1100℃) are estimated to be 3.4%―7.2% and 6.3%―12.1% higher than those at ambient pressure and temperature conditions, respectively. (3) Omphacite component dominates the anisotropy of eclogite while garnet component reduces the anisotropy and increases the seismic velocities. Quartz component has a small effect on the anisotropy but reduces the seismic velocities of eclogite. The effect of rutile component is negligible on seismic properties of eclogite due to its trivial volume fraction. (4) The increase of volume fraction of omphacite in eclogite will reduce the seismic velocities and increase the anisotropy. Omphacitite has seismic velocities reduced by 6%―8% and anisotropies increased to 3%―4% compared to those of garnetite. Our results suggest that the seismic properties calculated with single crystal elastic properties and CPOs are equivalent to those measured in laboratory. Moreover, it provides insights into the mineral physical interpretations of eclogite seismic properties.  相似文献   

6.
A laboratory study was carried out to investigate the influence of confining stress on compressional- and shear-wave velocities for a set of rock samples from gas-producing sandstone reservoirs in the Cooper Basin, South Australia. The suite of samples consists of 22 consolidated sublitharenites with helium porosity ranging from 2.6% to 16.6%. We used a pulse-echo technique to measure compressional- and shear-wave velocities on dry samples (cylindrical 4.6 × 2 cm) at room temperature and at elevated confining stress (≤ 60 MPa). Compressional- and shear-wave velocities in samples increase non-linearly with confining stress. A regression equation of the form V = A ? Be?DP gives a good fit to the measured velocities with improved prediction of velocities at high confining stresses compared with equations suggested by other studies. The predicted microcrack-closure stresses of the samples show values ranging from 70 MPa to 95 MPa and insignificant correlation with porosity, permeability or clay content. There is a positive correlation between change in velocity with core porosity and permeability, but this association is weak and diminishes with increasing confining stress. Experimental results show that pore geometry, grain-contact type, and distribution and location of clay particles may be more significant than total porosity and clay content in describing the stress sensitivity of sandstones at in situ reservoir effective stress. The stress dependence of Cooper Basin sandstones is very large compared with data from other studies. The implication of our study for hydrocarbon exploration is that where the in situ reservoir effective stress is much less than the microcrack-closure stress of the reservoir rocks, the variation of reservoir effective stress could cause significant changes in velocity of the reservoir rocks. The velocity changes induced by effective stress in highly stress-sensitive rocks can be detected at sonic-log and probably surface-seismic frequencies.  相似文献   

7.
刘斌 Kern  H 《地球物理学报》1998,41(3):371-381
在实验室中研究了蛇纹岩和角闪岩样品在不同温压条件下的纵、横波速度和Q值.这两种岩样对应的主要组成矿物叶蛇纹石和普通角闪石都具有很强的晶格优选方位(LPO).随着围压的增加,波速和Q值均增大,但是在相互正交的三个方向上(垂直或平行于层理面及线理方向)增大的速度并不相同,这与微裂隙的逐渐闭合密切相关.在600MPa的围压下升高温度直到600℃以上,由于微裂隙的热扩张受到约束,波速和Q值下降幅度很小.观测到的波速和Q值的各向异性具有不同的机理,波速各向异性主要与定向分布的微裂隙和主要矿物的LPO等构造因素有关;高围压下纵波Q值各向异性与速度各向异性正好相反,可能是由于形成层理面的定向排列的平板状矿物晶体沿不同方向边界之间接触程度不同造成的.  相似文献   

8.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   

9.
唐杰  吴国忱 《地球物理学报》2015,58(8):2986-2995
本文在实验室对所获取的东营地区层理发育的低孔隙度页岩和泥岩的各向异性裂纹演化特性进行了研究,获得了各向同性条件下泥页岩的力学与超声波响应特性,分析了应力幅度对于页岩声波速度和各向异性的影响.主要结论包括:(1)泥页岩在循环载荷下存在滞后效应,表明其经历了去压实或油气产生导致的超压;(2)泥岩和页岩具有不同程度的各向异性,随着各向同性压力的增高微裂隙逐渐闭合,样品的各向异性程度减弱;(3)分析了岩石韧度和裂纹损伤参数随压力的变化特征,相比泥岩,页岩各向异性程度更高,随压力变化更明显,其裂纹导致的附加各向异性更强;(4)分析了各向异性岩石的动态弹性模量特征,由于软裂隙空间的闭合,动态弹性模量在低压条件下都随着围压的增加有硬化趋势.  相似文献   

10.
板岩作为一种浅变质岩在我国有着广泛的分布,对其地震波速度的研究将有助于对这类过渡性岩石的有效区分,对于浅层地壳的各向异性研究也具有重要意义.本文对采自云南丙中洛地区的板岩样品进行了地震波速度的室内实验研究,其中部分实验是在加拿大Dalhousie High Pressure Laboratory完成.实验获得了板岩在围压10~600 MPa条件下、不同构造主方向(X,Y和Z)上的地震波速度,在围压600 MPa时,X、Y、Z三个方向的P波速度分别为6.58、6.46、5.91 km/s,平均速度为6.30 km/s,S波平均速度约为3.62 km/s,VP/VS=1.74;并初步分析了板岩地震波速度、横波分裂及其波速各向异性随着围压的变化规律,发现所测量的板岩在较低围压(<150 MPa)时波速的各向异性随围压升高而迅速减小,主要是由于其内部微裂隙的定向排列引起的,而随着围压的继续增加(>150 MPa时)微裂隙基本闭合,黑云母、阳起石等片状矿物的定向排列成为其地震波各向异性的主导诱因,此时(围压为600 MPa)VP、VS的各向异性分别稳定在13%、16%左右.本研究所获取的基础实验数据及所探讨的板岩地震波性质将为确定地壳上部显微裂隙的优选定向、浅层地壳的各向异性分析、地球物理模型条件约束等提供基础.  相似文献   

11.
The seismic velocity and attenuation of fully saturated shales were measured for the first time under overpressured conditions, using the ultrasonic reflection technique. Shale cores from naturally overpressured horizons in the North Sea were tested in the laboratory, at confining and pore pressures relevant to in situ conditions.
A single-frequency tone-burst pulse wave was used to determine the seismic wave velocities and quality factors of the shale samples, with errors less than 0.3% and 0.1 dB/cm, respectively, at a frequency of 0.75 MHz. Sample length changes with varying confining and pore pressure were measured and the pore pressure equilibration time was monitored for each sample.
The anisotropy of the seismic attributes ( V p, V s, Q p and Q s) was determined over a range of differential pressures from 5 to 60 MPa, with respect to the predominant foliation. The ultrasonic velocity data followed a transversely isotropic pattern depending on the direction of wave propagation with respect to the laminations. The Poisson's ratio was found to rise by 5% as the shale material progressed from a normally pressured to an overpressured state. The quality factor ( Q ) characteristics were interpreted in terms of pore geometry and connectivity as well as the directional permeability of the transversely isotropic shale material. The results were converted to bulk and shear loss modulus defects, and a positive bulk loss was observed for waves propagating perpendicular to the lamination plane even above differential pressures of 20 MPa. This indicates different levels of Biot-flow and squirt-flow attenuation mechanisms acting within the shale structure, depending on the wave propagation and vibration directions.  相似文献   

12.
We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ~10 and ~18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ~10 MPa and then stabilises at ~1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.  相似文献   

13.
Seismic techniques provide unique tools to investigate the structure and, in combination with petrological, geochemical and petrophysical study, the composition of the lower crust. Controversies can be solved with comparative study of metamorphic terrains or xenoliths that occur adjacent to areas where seismic refraction/reflection data are available. Xenoliths represent a direct sampling of the inaccessible lower crust at the time of the volcanism, whilst exposed crustal sections can only be used as analogue of present day lower crust.The present study is focused on the measurements of compressional wave velocities up to conditions exceeding the beginning of melting (950 °C at 500 MPa confining pressure) on three garnet–biotite–sillimanite metapelitic xenoliths recovered from the Neogene dacites of El Hoyazo (SE Spain). They preserve widespread interstitial rhyolitic glass as evidence of primary melt extraction and represent the best example of partially molten lower crust in the Alborán Domain. The influence of glass on Vp is primarily reflected by anomalous positive dVp/dT while heating with velocity increasing at 500 MPa from 4.98 to 5.50 km s 1 at room temperature to 5.85–6.79 km s 1 at 650–700 °C. This corresponds to the glass transition where all the grain boundaries and most of the pores within the glass are closed. After this point, the velocity decreases to 6.2–6.5 km s 1 at 950 °C where re-melting of the glass is achieved and additional partial melt produced. On cooling, the behavior is normal with negative dVp/dT. After the thermal treatment velocities are 30% higher (6.07–7.21 km s 1) and reveal that in the presence of intergranular melt velocity measurements at room temperature cannot be extrapolated to high temperatures.P-waves measured at melting conditions are in agreement with deep seismic refraction data and tomography in the area and corroborate the hypothesis that partial melts are actually present in Alborán lower crust.  相似文献   

14.
We investigated initiation and propagation of compaction bands (CB) in six wet and four dry Bentheim sandstone samples deformed in axial compression tests with strain rates ranging from 3.2 × 10?8 s?1 to 3.2 × 10?4 s?1. Circumferential notches with 0.8-mm width and 5-mm depth served to initiate CB at mid-sample length. Wet samples were saturated with distilled water and deformed at 195 MPa confining pressure and 10 MPa pore pressure. Dry samples were deformed at 185 MPa confining pressure. Twelve P-wave sensors, eight S-wave sensors and two pairs of orthogonally oriented strain-gages were glued to the sample surface to monitor acoustic emission (AE), velocities and local strain during the loading process. Nucleation of compaction bands is indicated by AE clusters close to the notch tips. With progressive loading, AE activity increased and AE hypocenters indicated propagation of a single CB normal to the sample axis. CB propagation from the sample periphery towards the centre was monitored. Microstructural analysis of deformed samples shows excellent agreement between location of AE clusters and CBs. In both dry and wet samples the lateral propagation of CBs was about 100 times faster than axial shortening rates. At the slowest displacement rate, AE activity during band propagation was reduced and CB nucleation in wet samples occurred at 20% lower stresses. This may indicate an increasing contribution of stress corrosion processes to the formation of the compaction bands. In dry and wet samples inelastic compaction energy per area ranged between 16 and 80 kJ m?2. This is in good agreement with previous estimates from laboratory and field studies.  相似文献   

15.
组构对花岗片麻岩高温流变影响的实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
深部岩石先存的变形组构对流变特性影响的实验研究是新的研究热点之一,然而目前相关的实验研究非常有限.本文利用3 GPa固体介质熔融盐三轴高温高压容器,选择华北克拉通北部辽东拆离断层带中具有变形组构的花岗片麻岩样品,在温度600~840℃、围压800~1200 MPa、应变速率1×10-4~2.5×10-6/S条件下,对不同组构方向的样品(实验压缩方向分别垂直和平行花岗片麻岩的面理)开展高温高压流变实验.实验结果表明,在相同的应变速率和温度条件下,垂直面理的岩石强度比平行面理的岩石强度要高.两组实验样品在600~700℃时,应力指数平均值为6.5,为半脆性流变;在800~840℃时,应力指数平均值为2,垂直面理样品的激活能为Q=380 kJ/mol,平行面理样品的激活能为Q=246.4 kJ/mol,以塑性变形为主,局部存在黑云母和角闪石的脱水熔融.微观结构研究表明,垂直面理的样品,在变形过程中形成了新的变形条带,把原有的面理破坏改造;而平行面理的样品,在实验变形过程中新的变形带主体继承了原有组构.EBSD分析显示花岗片麻岩原岩中石英轴极密区位于Z轴附近,为底面滑移;压缩方向垂直面理的样品,石英组构轴极密区位于X轴附近,为柱面滑移;压缩方向平行面理的样品,石英组构轴极密区位于Z轴附近,伴有少量的Y轴极密,底面滑移和柱面滑移.这表明垂直面理的样品中石英变形改造比平行面理的样品更彻底,这与微观结构分析结果一致.显然实验样品的非均匀组构对样品强度和石英轴定向等具有显著影响,但对样品的脆塑性转化和塑性变形机制没有实质影响,这对理解地壳深部普遍存在的形态各向异性岩石流变具有重要参考价值.  相似文献   

16.
The velocities of two Devonian-Mississippian shales have been measured to confining pressures of 200 MPa in a laboratory study of anisotropy and wave propagation. Both samples were found to be transversely isotropic at elevated pressures with the main symmetry axis perpendicular to bedding. The elastic constants of the shales were used to calculate phase and group velocity surfaces as a function of angle to the bedding normal. Multiple velocity measurements in non-symmetry directions, not undertaken in previously published studies of shales, have been used to confirm features observed on calculated velocity surfaces. It is demonstrated that velocities measured in non-symmetry directions are phase velocities. Group velocities were found to be significantly lower than the corresponding phase velocities of the shales due to their high anisotropies. Shear wave splitting was found to be negligible for propagation directions within approximately 30° of the bedding normals.  相似文献   

17.
Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD‐PP1 and CCSD‐PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite‐facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote ± quartz ± biotite ± ilmenite ± titanite. However, coesite and coesite‐bearing ultrahigh‐pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631–780°C and pressures of ≥2.8 × 103 MPa, representing the P–T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642–726°C; P ≥ 2.8 × 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites.  相似文献   

18.
ABSTRACT A genetic annealing (GAN) algorithm is used to derive an empirical model which predicts compressional-wave velocity values for overpressured siliciclastic rocks. The algorithm involves non-linear random searching and mutation techniques and its annealing component imposes a very strict control over the rate of convergence of the search. This technique provides an alternative to the standard calculations involving the effective stress coefficient ( n ). The pore pressure is introduced into the model as an explicit variable and as part of an overpressure coefficient, ( P p/ P c) − the ratio of pore to confining pressure. Empirical model-derived data and known laboratory data are compared and their differences are shown to be within statistically acceptable error limits. The empirical equation fits all under- and overpressured data simultaneously, irrespective of pore fluid pressure level, with the same parameters. It is used to predict seismic velocities very accurately for extreme levels of overpressure, starting from normally pressured experimental data. The model highlights the effect of pore pressure on the compressional-wave velocity of fully saturated samples with different clay contents. It can be used when the experimental data available are sparse and particularly when a prediction of material behaviour is necessary at specific pore fluid pressure and depth conditions.  相似文献   

19.
— A set of experiments on four samples of Oshima Granite at 15, 40 and 60 MPa confining pressure have been performed in order to investigate the damage behavior of granite submitted to deviatoric stress. In addition an experiment on one sample of Toki Granite at 40 MPa confining pressure was performed, in order to compare and elucidate the structural effects. Using acoustic emission data, strain measurements and elastic wave velocities allow to define consistently a damage domain in the stress space. In this domain, microcracking develops. The microcracking process is, in a first stage, homogeneous and, close to failure, localized. Elastic wave velocities decrease in the damage domain and elastic anisotropy develops. Using Kachanov's model (1993), elastic wave velocities have been inverted to derive the full second-order crack density tensor and characterize the fluid saturation state from the fourth-order crack density tensor. Crack density is strongly anisotropic and the total crack density close to failure slightly above one. The results indicate that the rock is saturated in agreement with the experimental conditions. The model is thus shown to be very appropriate to infer from elastic wave velocities a complete quantitative characterization of the damaged rock.  相似文献   

20.
Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150–400°C, an inner cold annulus of blocky lava at 40–80°C, and a warm central core at 100–200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3–1.5 × 104  s−1m−2), followed by the hot central core (0.1–0.4 × 104 J s−1m−2) and cold annulus (0.04–0.1 × 104 J s−1m−2). Overall surface power output was also dominated by the outer annulus region (31–176 MJ s−1), but the cold annulus contributed equal power (2.41–7.07 MJ s−1) as the hot central core (2.68–6.92 MJ s−1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3–2.2 and 1.5–4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号