首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Although increasing attention has been paid to upward shift of plant species in altitude as a response to global warming, research on this phenomenon at low altitudinal and low latitudinal zones did not receive enough attention. In this study, an investigation was carried out to test the relationship between the upward spread of Moso bamboo (Phyllostachys pubescens) along altitudinal gradient and the increasing air temperature over the past decade within the Tianmu Mountain region, situated in southeastern China. Results showed that the peak elevation of Moso bamboo population establishment rose by an average of 9.8 m (±2.7 m) during the past decade and significant correlation existed with mean annual temperature (P < 0.0001, n = 339) but not with annual precipitation (P = 0.7, n = 339), indicating that the upward shift of Moso bamboo along altitudinal gradients was driven primarily by warming temperatures. This upward shift could potentially reduce biodiversity by altering the species composition of the ecosystem. However, there is also the potential for increased carbon sequestration capacity of local forest systems, which would produce an additional carbon sink to combat rising atmospheric CO2 concentrations and future global warming.  相似文献   

2.
Forest vegetation of a protected area(Binsar Wildlife Sanctuary) in Kumaun region(west Himalaya) was analysed for structure,composition and representativeness across three different altitudinal belts,lower(1,600-1,800 m a.s.l.),middle(1,900-2,100 m a.s.l.) and upper(2,200-2,400 m a.s.l.) during 2009-2011 using standard phytosociological methods.Four aspects(east,west,north and south) in each altitudinal belt were chosen for sampling to depict maximum representation of vegetation in the sanctuary.Population structure and regeneration behaviour was analysed seasonally for two years to show the establishment and growth of tree species.A total of 147 plant species were recorded from the entire region of which 27 tree species were selected for detailed study.Highest number was recorded at upper(18 species),and lowest at lower altitudinal belt(15 species).The relative proportion of species richness showed higher contribution of tree layer at each altitudinal belt.The population structure,based on the number of individuals,revealed a greater proportion of seedling layer at each altitudinal belt.The relative proportion of seedlings increases significantly along altitudinal belts(p<0.05) while opposite trends were observed in sapling and tree layers.The density of sapling and seedling species varied non-significantly across seasons(p>0.05).The density values decreased in summer and increased during rainy season.As far as the regeneration status is concerned,middle and upper altitudinal belts showed maximum number of species with fair regeneration as compared to lower altitudinal belt.Overall density diameter distribution of tree species showed highest species density and richness in the smallest girth class and decreased in the succeeding girth classes.This study suggests that patterns of regeneration behaviour would determine future structural and compositional changes in the forest communities.It is suggested that the compositional changes vis-à-vis role of ‘New’ and ‘Not regenerating’ species need priority attention while initiating conservation activities in the sanctuary.This study calls for exploring other less explored Wildlife Sanctuaries in the Himalaya and across the world,to achieve overall biodiversity status in these protected areas and thus to justify their role in conserving biodiversity in the region.  相似文献   

3.
Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the "Bosque de Neblina de Cuyas", in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity.  相似文献   

4.
Impact of anthropogenic disturbance on species diversity and vegetation structure of a lowland tropical rainforest was studied in the foothills of Eastern Himalaya, India. Tree species richness, density, basal area and the diversity indices were found significantly (P<0.05) decreased with the increasing level of disturbances whereas, shrub density, basal area and herb density significantly increased with increasing disturbance level. In case of shrubs, Simpson’s dominance index significantly (P<0.007) increased along the disturbance gradient, whereas Pielou’s evenness index significantly (P<0.005) decreased with an increasing level of disturbance. Shannon-Weiner diversity index for herbs significantly (P<0.016) increased with increasing disturbance whereas, Simpson’s dominance index was significantly (P<0.013) declined along the disturbance gradient. Results revealed that 10–50 cm dbh classes constituted the highest stem density, and highest basal area was recorded in the >100 cm dbh class in all three sites. Density of the matured trees decreased with increasing DBH whereas, tree basal area tended to increase with increasing DBH in all three sites. Tree species richness was highest in the lower DBH classes. 62.07% of the total tree species regenerated in the largely undisturbed site followed by 50% in the mildly disturbed and 26.32% in the highly disturbed site. The overall regeneration condition was found to be good in the largely undisturbed site. Mildly disturbed site exhibited fair regeneration and so was in the highly disturbed site. Discernable variations in species composition, diversity, regeneration and tree population structure revealed the impact of anthropogenic disturbances on rainforest vegetation dynamics. Higher degree of disturbance was furtherly found not only affecting species diversity but also promoting the growth of invasive weed species. Dominance of Hydnocarpus kurzii and Crypteronia paniculata in the highly disturbed site also indicated that these less-valued timber species may benefit from the vegetation mosaic produced by the disturbance; so differences in abundance of these species may be useful for bio-indication. Furthermore, present study suggests the need of adequate biodiversity conservation measures and adaptation of sustainable forest management approaches in disturbed areas of lowland tropical rainforest in the foothills of eastern Himalaya, India.  相似文献   

5.
Mountains are an excellent system for evaluating ecological and biogeographical patterns. The obvious variations of the environmental factors along the altitude create different zones with adapted plant assemblages. However, few studies make use of plant functional type(PFT) for describing the variation of vegetation along altitudinal gradients. A PFT is a group of taxa with similar traits which respond similarly to the environmental gradients. In this study, we used PFTs as indicators describing five vegetation zones in the western Alborz Mt, Iran from 2000 – 4500 m. The plant trait data presented here covers six plant traits including growth form, stemleaf ratio, spinescence, hairiness, leaf consistency and plant height of 297 species. We considered altitude and soil factors to test the importance of environmental variables. We applied a multivariate analysis of three table ordination, i.e. environmental, species, and traits data to identify the PFTs. We further applied fourth-corner statistic to quantify trait-environment relationships. A constrained hierarchical clustering was used to detect five altitudinal zones and two zones of low and high nitrogen concentration. With regard to altitude wediscuss the distribution of species, traits and PFTs. Growth form, plant height and stem-leaf ratio were significantly related to altitude and nitrogen. We identified 19 PFTs from which 18 were significantly associated to one or more altitudinal zones. While the lower altitudinal zones contain a variety of PFTs higher altitudes contain less PFTs with the highest altitude containing only one single PFT, tiny rosette plants with soft mesomorphic leaves. We identified grazing and climatic harshness as well as rockiness as the most important drivers of the distribution of plant functional traits and types across the studied gradient.  相似文献   

6.
Change in environmental conditions with altitudinal gradients induces morpho-anatomical variations in plants that have been poorly documented in intertropical regions. Five species with three life forms, cryptophyte (Alchemilla procumbens, Geranium seemannii), hemicryptophyte (Acaena elongata, Lupinus montanus), and phanerophyte (Symphoricarpos microphyllus), distributed along an altitudinal gradient in the Sierra Nevada of central Mexico, were studied. The aims were to identify and evaluate their morpho-anatomical modifications under the hypothesis that the sizes of individuals and of their wood and leaf cell types decrease as elevation increases. Three individuals per species per site were collected at seven locations along the altitudinal gradient (2949-3952 m). Their morpho-anatomical characters were analyzed through multiple regression analyses. Elevation was the variable that best explained anatomical changes in the leaf and wood of the five species. Canopy density and potassium content in the soil also contributed to explain the variation in anatomical variables along the gradient. As elevation increased a bimodal pattern was observed in various anatomical characters as in the leaf width of A. elongata, A. procumbens and G. seemannii and in the vessel diameter of A. procumbens, G. seemannii, and L. montanus. Other features as the vessel diameter of A. elongata, the fiber length of S. microphyllus, and the ray width of A. elongata increased as the elevation increased. Anatomical traits have a tendency to decrease in size but just toward the end of the gradient, which is probably related to changes in canopy density. The plant response to the altitudinal gradient is more focused on anatomical adaptations than morphological variation; it is also species dependent.  相似文献   

7.
Slope aspect has significant effect on the development and distribution of montane forest,especially in arid and semiarid regions.This paper,using SPOT5 images and 1:50,000 DEM,digitally extracts and analyzes the spatial information of montane coniferous forest(mainly Qinghai spruce),and thereby explores how the upper and lower limits and the altitudinal range of coniferous forest vary and how the area of coniferous forest is related with annual insolation with all aspects in the Helan Mountains.The results show that: 1) In the eastern flank,the lower limit of coniferous forest is between 1,600 m and 2,000 m a.s.l.,and the upper limit between 2,800 m and 3,000 m a.s.l.;in the western flank,the lower limit of coniferous forest is between 2,000 m and 2,300 m a.s.l.,and the upper limit between 2,800 m and 3,100 m a.s.l.2) The altitudinal ranges of coniferous forest are 806~1,435 m,438~1,140 m for eastern flank and western flank,respectively.3) The area of coniferous forest takes on a normal distribution with aspect,and it has a close relationship with annual insolation.This distribution model developed in this paper quantitatively reveals the significant effect of slope aspect on the distribution of coniferous forest in arid and semi-arid land.  相似文献   

8.
This paper analyses the diversity and spatial pattern of the altitudinal belts in the Hengduan Mountains in China. A total of 7 types of base belts and 26 types of altitudinal belts are identified in the study region. The main altitudinal belt lines, such as forest line, the upper limit of dark coniferous forest and snow line, have similar latitudinal and longitudinal spatial patterns, namely, arched quadratic curve model with latitudes and concave quadratic curve model along longitudinal direction. These patterns can be together called as “Hyperbolic-paraboloid model”, revealing the complexity and speciality of the environment and ecology in the study region. This result further validates the hypnosis of a common quadratic model for spatial pattern of mountain altitudinal belts proposed by the authors. The spatial pattern of altitudinal belts is closely related with moisture-related exposure effect in the Hengduan Mountains. Different combinations (spectra) of altitudinal belts and different base belt types appear in windward and leeward flanks and even in the same flanks of different ranges. This is closely related with the parallel mountain ranges of the Hengduan Mountains, which, at nearly right angle with the moving direction of prevailing moisture-laden air masses from west and east, hold up the warm and humid monsoon wind from moving into the core region and result in different moisture conditions in windward and leeward flanks. However, how to quantitatively describe the moisture-related exposure effect needs further study. In addition, the data quality and data accuracy at present also affect to some extent the result of quantitative modeling and should be improved with RS/GIS in the future.  相似文献   

9.
Biodiversity patterns of free-living marine nematodes were studied using specific,taxonomic and phylogenetic diversity measures in the southern Yellow Sea,China.The results showed that the average of Shannon-Wiener diversity index(H′) in the study area was 3.17.The higher values were distributed in the east part of Shandong coastal waters and north part of Jiangsu coastal waters,while the lower values were distributed in the southern Yellow Sea Cold Water Mass(YSCWM).The average of taxonomic diversity(Δ) was 62.09 in the study region.The higher values were distributed in the transitional areas between the coastal areas and the southern YSCWM,while the lower values were distributed near the north part of Jiangsu coastal waters and the YSCWM.Results of correlation analysis of species diversity and taxonomic diversity showed that some of the two kinds of diversity index were independent,which suggested that combining the two kinds of diversity indices can reflect the ecological characteristics better.A test for 95% probability funnels of average taxonomic distinctness and variation in taxonomic distinctness suggested that Station 8794(in the YSCWM) was outside of the 95% probability funnels,which may be due to the environmental stress.Results of correlation analysis between marine nematodes biodiversity and environmental variables showed that the sediment characteristics(Md? and Silt-clay fraction) and phaeophorbide a(Pha-a) were the most important factors to determine the biodiversity patterns of marine nematodes.  相似文献   

10.
Leaf morphological and stoichiometric characteristics are considered to represent both the interior inheritable characters in the plant and its adaptations to specific exterior environments. Rhododendron agglutinatum, an evergreen alpine shrub species, occupies a wide range of habitats above timberline in the Miyaluo Natural Reserve, southwestern China. Along an altitudinal gradient ranging from 3700 to 4150 m, we measured leaf morphological characters including leaf dry matter content (LDMC), leaf dry mass per unit area (LMA), and one leaf area (OLA), as well as carbon (C) and nutrient (N, P) contents in leaves of three different age groups (juvenile leaves, mature leaves and senescent leaves). We also calculated the stoichiometric relationships among carbon and nutrients (C/N, C/P and N/P). Results showed that both age and altitude affected the leaf morphological and stoichiometric properties of R. agglutinatum. Mature leaves possessed the highest LDMC, LMA and C contents both on a dry mass basis and on a unit area basis. Younger leaves possessed higher contents of nutrients. OLA as well as ratios between carbon and nutrients (C/N, C/P) increased with ages. Juvenile leaves possessed lowest ratio between nitrogen and phosphorus. In juvenile leaves, nutrients increased with altitudinal elevation, whereas other traits decreased. In mature leaves, nutrients and their ratios with carbon showed consistent trends with juvenile leaves along increasing altitude, whereas LMA and carbon on a unit area basis showed opposite trends with juvenile leaves along increasing altitude. In senescent leaves, only content of phosphorus on a unit area basis and N/P were found linearly correlated with altitude. Our results demonstrated a clear pattern of nutrient distribution with aging process in leaves and indicated that a high possibility of N limitation in this region. We also concluded that younger leaves could be more sensitive to climate changes due to a greater altitudinal influence on the leaf traits in younger leaves than those in elder leaves.  相似文献   

11.
We investigated the quantity and quality 0f fallen l0gs in different Tsuga l0ngibracteata f0rest c0mmunities in the Tianba0yan Nati0nal Nature Reserve. We used redundancy analysis t0 determine the spatial distributi0n 0f fallen l0gs in the different f0rest c0mmunities and t0 analyze the relati0nships am0ng stand structure, t0p0graphic fact0rs and human disturbance. The v0lume, c0vered area, mean l0g length and number 0f fallen l0gs differed significantly am0ng f0rest types (P 〈 0.05), but mean diameter at breast height sh0wed n0 significant difference (P 〉 0.05). The l0g v0lume and c0vered area in different f0rest types sh0wed the f0ll0wing trend: T. l0ngibracteata pure f0rest 〈 T. l0ngibracteata + Olig0staehyum scabrifl0rur 〈 T. l0ngibraeteata + hardw00d 〈 Rh0d0dendr0n simiarum + T. l0ngibraeteata 〈 T. l0ngibraeteata + Phyll0stachys heter0cycla pubescens. The spatial distributi0n patterns 0f l0gs quantity and quality indicated that l0g v0lume and c0vered area were str0ngly affected by envir0nmental fact0rs in the f0ll0wing 0rder: human disturbance 〉 elevati0n 〉 sl0pe p0siti0n 〉 b0le height 〉 tree height 〉 sl0pe aspect 〉 density 〉 basal area 〉 sl0pe gradient. The relative c0ntributi0n 0f envir0nmental variables 0n the t0tal variance was t0p0graphy (76%) 〉 disturbance (42%) 〉 stand structure (35%). T0p0graphy and disturbance c0mbined explained 8.2% 0f the variance. Fallen l0~s auantitv and aualitvwere negatively related t0 elevati0n and sl0pe p0siti0n, and p0sitively ass0ciated t0 human disturbance. The l0g v0lume decreased fr0m n0rthern t0 s0uthern sl0pes. Envir0nmental fact0rs had the highest impact 0n class I (slightly decayed), and l0west impact 0n class V (highly decayed).  相似文献   

12.
Evapotranspiration(ET) is a crucial part of the global hydrological cycle, and quantifying ET components is significant for understanding the global water cycle and energy balance. However, there is no consensus on the value of ET components, especially in topographic abrupt change zone, such as eastern margin of the Qinghai-Tibet Platea, where values of ET changes along the altitudinal gradients. Our aim is to explore the influencing factors in partitioning evapotranspiration and how ET components change with increasing elevations. A novel approach was proposed to estimate ET components by adding net solar radiation(Rn) instead of the vapor pressure deficit(VPD) into the underlying water use efficiency(u WUE) model based on one-year continuous measurements of flux data along the elevation gradient on Mount Gongga. Correlation analysis shows that the u WUE model's performance can be improved significantly by considering Rn instead of VPD, with correlation coefficients increasing by 35%-64%. The ratios of transpiration(T) to ET(T/ET) were 0.47, 0.48, 0.50 and 0.35 for the deciduous broadleaf forest(BF), mixed coniferous and deciduous broadleaf forest(MF), evergreen needle forest(ENF) and shrub land(SL), respectively. Leaf area index(LAI) and air temperature(Ta) were the two main controlling factors in determining T/ET during the growing season and at an annual scale, while Rn and Ta played more important roles during the dormant season. This study highlights the importance of incorporating Rn in partitioning evapotranspiration by using the water use efficiency(WUE) method in a humid mountainous region, which can improve the estimation of T/ET on a global scale.  相似文献   

13.
Construction of big dams on rivers develops artificial lakes or water reservoirs which conceive alterations in soil properties of the upstream catchment area. An undulating topography and freckly soil properties cause ups and downs in tree diversity, composition and distribution. The study aimed to evaluate the effect of Gobind Sagar reservoir on soil properties relative to the distance from it and assess its effect on tree diversity, evenness and their distribution in tropical and subtropical forests. Based on data analysis it was found that the soil moisture and organic carbon decreased along with increasing distance from the reservoir. It played a significant role in varying tree diversity. The sites distributed within0-2 km showed significantly higher α and β-diversity indices. Tree species richness and diversity indices showed a strong correlation(p 0.05) with soil moisture and organic carbon content. Simpson's and Mc Intosh evenness indices showed a strong negative correlation with soil bulk density. Indirect Detrended Correspondence Analysis(DCA) identified soil moisture and soil organic carbon as two major environmental gradients that influenced tree diversity and their distribution in five tropical and four subtropical forests in an upstream catchment of the reservoir. Mixed forests inhabited moist sites andAcacia-Pinus forests showed an inclination to dry areas. Canonical Correspondence Analysis(CCA)revealed that the tree species in tropical forests were mainly affected by driving forces such as soil moisture,organic carbon and bulk density whereas, in subtropical forest tree species were influenced by elevation, soil p H, EC and clay content.  相似文献   

14.
This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature(P/T)index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1°C to 1.7°C by 2020 and by2°C to 3°C by 2050. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon,and a reduction between 3% and 20% is expected for2050. The reductions in water availability were projected for all altitude levels and plant communities.The most marked reduction was under the HADLEYA2 scenario, in which the lower limit of the altitudinal range increased from 2,710 to 3,310 m(2050 horizon)with reductions in the P/T index between 36% and39% compared to the current climate. Most plant species tended to shift their distribution from 200 to300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2050 temporal horizon,30% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival(4,210 m).  相似文献   

15.
European larch (Larix decidua) forests of the western Alps form extensive cultural landscapes whose resilience to global changes is currently unknown. Resilience describes the capacity of ecological systems to maintain the same state, i.e., the same function, processes, structure, and composition despite disturbances, environmental changes and internal fluctuations. Our aim is to explore the resilience of larch forests to changes in climate and land use in the western Italian Alps. To do so, we examined whether larch forests can be described as an alternative stable state in mountain forest ecosystems. We used tree basal area data obtained from field forest inventories in combination with topography, forest structure, land use, and climate information. We applied three different probabilistic methods: frequency distributions, logistic regressions, and potential analyses to infer the resilience of larch forests relative to that of other forest types. We found patters indicative of alternative stable states: bimodality in the frequency distribution of the percent of larch basal area, and the presence of an unstable state, i.e., mixed larch forests, in the potential analyses. We also found: (1) high frequency of pure larch forests at high elevation, (2) the probability of pure larch forests increased mostly with elevation, and (3) pure larch forests were a stable state in the upper montane and subalpine belts. Our study shows that the resilience of larch forests may increase with elevation, most likely due to the altitudinal effect on climate. Under the same climate conditions, land use seems to be the main factor governing the dominance of larch forests. In fact, subalpine larch forests may be more resilient, and natural succession after land abandonment, e.g., towards Pinus cembra forests, seems slower than in montane larch forests. In contrast, in the upper montane belt only intense land use regimes characterized by open canopies and forest grazing may maintain larch forests. We conclude that similar approaches could be applied in other forest ecosystems to infer the resilience of tree species.  相似文献   

16.
Hindu Kush Himalaya(HKH) is the largest and the most diverse mountain region in the world that provides ecosystem services to one fifth of the total world population. The forests are fragmented to different degrees due to expansion and intensification of human land use. However, the quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. We used the globally available tree canopy cover data derived from Landsat-TM satellite to find out the decadal forest cover change over 2000 to 2010 and their corresponding fragmentation levels. Using SRTMderived DEM, we observed high forest cover loss up to2400 m that highly corroborated with the population distribution pattern as derived from satellite observation. In general, forest cover loss was found to be higher in south-eastern part of HKH. Forest fragmentation obtained using ‘area-weighted mean radius of gyration' as indicator, was found to be very high up to 2400 m that also corroborated with high human population for the year 2000 and 2010. We observed logarithmic decrease in fragmentation change(area-weighted mean radius of gyration value),forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R~2 values(i.e., 0.889, 0.895, 0.944 respectively). Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, griddata on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.  相似文献   

17.
Topographic and edaphic variables are the main ecological factor determining species spatial variability on mountainous forests. A field study was performed in central Alborz to investigate how the edaphic and topographic parameters can affect the tree and shrub communities. Initially, 27 forest stands were identified and the homogeneous units were separated regarding physiognomy. In each single homogeneous unit, one random sample plot (1000 m2) and totally 43 plots were established. In each plot, the presence and abundance of all trees and shrubs were recorded and four soil samples were taken from depths of 0-5 and 5-20 cm. Concerning classification results, eight different forest communities were identified. The lowest and highest soil pH values were observed in Malus orientalis and pistacia-Amygdalus communities, respectively. The water saturation percent of pure- and mixed Juniperus excelsa and Rhus coriaria was the highest amongst communities. The clay content was the highest in pure J. excelsa. The 0-5 organic matter and Nitrogen content in mixed J. excelsa were significantly higher than pure J. excelsa and other communities. The CCA (Canonical Correspondence Analysis) results indicated that the altitude, precipitation, pH, EC, SP, clay and CaCO3 are the most important factors determine the distribution of trees and shrub in central Alborz  相似文献   

18.
Little is known about whether soil microbial population dynamics are correlated with forest succession.To test the hypotheses that(1) soil microbial composition changes over successional stages,and(2) soil microbial diversity is positively correlated with plant species diversity,we determined the soil microbial populations,community composition,and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China.The soil microbi...  相似文献   

19.
Natural seedling regeneration and tree establishment are affected by various environmental factors.In this study,we established eight,eight,six,and four independent forest stands(each stand was further divided into five subplots) respectively based on the altitudinal gradient,stand density,slope location,and slope aspect to investigate the effects of environmental factors on tree seedling regeneration in a pine-oak mixed forest.The results indicated that the seedling density was significantly higher at altitudes of 1,283 m to 1,665 m,whereas the sapling density did not differ with altitudes.The seedling and sapling density decreased significantly at 1,835 m.The seedling densities on the upper slopes were much higher than those on the middle and lower slopes,whereas the sapling density had no difference.The sapling density decreased gradually from the southwest(20°-75°) whereas it increased on the shady slopes to the northeast(40°).The seedling density increased from southwest(20°) to northeast(40°).The seedling and sapling densities increased with the stand density(850 trees ha-1to 1,525 trees ha-1) whereas the sapling density was significantly lower in stands(1,900 trees ha-1).Principal components analysis showed that the slope aspect and stand density had more important roles in tree regeneration in this study region compared with the other two factors.Therefore,our findings suggest that it will be beneficial to keep stands at a moderate density on shady slopes.Appropriate thinning of higher density stands is also expected to promote the natural regeneration of pine-oak mixed forest.  相似文献   

20.
To understand the effects of leaf physiological and morphological characteristics on δ 13C of alpine trees, we examined leaf δ 13C value, LA, SD, LNC, LPC, LKC, Chla+b, LDMC, LMA and Narea in one-year-old needles of Picea schrenkiana var. tianschanica at ten points along an altitudinal gradient from 1420 m to 2300 m a.s.l. on the northern slopes of the Tianshan Mountains in northwest China. Our results indicated that all the leaf traits differed significantly among sampling sites along the altitudinal gradient (P<0.001). LA, SD, LPC, LKC increased linearly with increasing elevation, whereas leaf δ 13C, LNC, Chla+b, LDMC, LMA and Narea varied non-linearly with changes in altitude. Stepwise multiple regression analyses showed that four controlled physiological and morphological characteristics influenced the variation of δ 13C. Among these four controlled factors, LKC was the most profound physiological factor that affected δ 13C values, LA was the secondary morphological factor, SD was the third morphological factor, LNC was the last physiological factor. This suggested that leaf δ 13C was directly controlled by physiological and morphological adjustments with changing environmental conditions due to the elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号