首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The geochemical and zircon geochronological (U-Pb, SHRIMP-II) study of Mesoarchean gabbros of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia made it possible to distinguish four gabbro types: (1) Fe–Ti gabbro, 2869 ± 12 Ma, (2) gabbro compositionally close to tholeiitic basalts, 2857 ± 7 Ma, (3) leucogbabbro, 2840 ± 5 Ma; and (4) melanogabbro, 2818 ± 14 Ma. From the early to late gabbros, the rocks are depleted in Ti, Fe, V, Y, Zr, Nb, Hf, REE and enriched in Mg, Ca, Cr, Ni. According to the systematics (Condie, 2005), the Nb/Y, Zr/Y, Zr/Nb ratios in the studied Late Archean gabbros are close to those of primitive mantle, while the gabbros in composition are similar to those of plumederived ocean-plateau basalts. Their magma sources were derived from different mantle reservoirs. The leucogabbro and melanogabbro with similar εNd = +4 were derived from a depleted mantle source (DM). The gabbro close in composition to tholeiitic basalts and having the elevated positive εNd (+4.9) was derived from a strongly depleted mantle source. Insignificant admixture of crustal material or lithospheric mantle is inferred in a source of the Fe–Ti gabbro (with lowest εNd = +2.1).  相似文献   

2.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

3.
Mikbi intrusion(MI) is a part of the Neoproterozoic Nubian Shield located along the NE-SW trending major fracture zones prevailing southern Eastern Desert of Egypt. In this study, we present for the first time detailed mineralogical and bulk-rock geochemical data to infer some constraints on the parental magma genesis and to understand the tectonic processes contributed to MI formation. Lithologically, it is composed of fresh peridotite, clinopyroxenite, hornblendite, anorthosite, gabbronorite, pyroxene amphibole gabbro, amphibole gabbro and diorite. All rocks have low Th/La ratios(mostly <0.2) and lack positive Zr and Th anomalies excluding significant crustal contamination. They show very low concentrations of Nb, Ta, Zr and Hf together with sub-chondritic ratios of Nb/Ta(2-15) and Zr/Hf(19-35),suggesting that their mantle source was depleted by earlier melting extraction event. The oxygen fugacity(logfO_2) estimated from diorite biotite is around the nickel-nickel oxide buffer(NNO) indicating crystallization from a relatively oxidized magma. Amphiboles in the studied mafic-ultramafic rocks indicate relative oxygen fugacity(i.e. ΔNNO; nickel-nickel oxide) of 0.28-3 and were in equilibrium mostly with 3.77-8.24 wt.% H_2 Omelt(i.e. water content in the melt), consistent with the typical values of subduction-related magmas. Moreover, pressure estimates(0.53-6.79 kbar) indicate polybaric crystallization and suggest that the magma chamber(s) was located at relatively shallow crustal levels. The enrichment in LILE(e.g., Cs, Ba, K and Sr) and the depletion in HFSE(e.g., Th and Nb) relative to primitive mantle are consistent with island arc signature. The olivine, pyroxene and amphibole compositions also reflect arc affinity. These inferences suggest that their primary magma was derived from partial melting of a mantle source that formerly metasomatized in a subduction zone setting. Clinopyroxene and bulkrock data are consistent with orogenic tholeiitic affinity. Consequently, the mineral and bulk-rock chemistry strongly indicate crystallization from hydrous tholeiitic magma. Moreover, their trace element patterns are subparallel indicating that the various rock types possibly result from differentiation of the same primary magma. These petrological, mineralogical and geochemical characteristics show that the MI is a typical Alaskan-type complex.  相似文献   

4.
ABSTRACT

Subduction-related basaltic rocks in active continental margins should record information about the lithospheric mantle. Mafic rocks from the Qimantag region of the East Kunlun Orogenic Belt (EKOB), NW China, can be used to constrain the evolution of mantle sources. The Heishan basalts (445 Ma) and Xiarihamu gabbros (427 Ma) display distinct geochemical and isotopic features, with basalts yielding relatively lower Na2O+K2O (1.48–4.16 wt.%) and Mg# (0.50–0.57) than gabbros (Na2O+K2O = 2.96–4.07 wt.%, Mg# = 0.65–0.81). Although the basalts and gabbros show similar enrichment of LILE and depletion of HFSE, the gabbros have higher Th/Y and lower Sm/Th and Nb/U ratios than the basalts, indicative of derivation from a more enriched mantle source. The Heishan basalts have relatively positive εNd(t) values (+4.7 to +5.8) whereas the Xiarihamu gabbros have negative εNd(t) values ranging from ?5.5 to ?3.8. Crustal contamination played an insignificant role in the formation of the basalts and gabbros. Our data suggest that the basalts originated from a depleted mantle source, slightly enriched by subduction-related fluids, whereas the gabbros originated from an enriched mantle source. These findings support a subduction-related progressive lithospheric mantle enrichment model over ~20 Ma beneath the Qimantag region in the Early Palaeozoic.  相似文献   

5.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

6.
为确定云南省个旧地区晚中生代大规模岩浆活动过程中基性端元的时限、地幔源区特点及大地构造环境,选取贾沙辉长.二长岩体为对象进行年代学和地球化学研究。贾沙辉长.二长岩体位于个旧西区,岩性主要为辉长岩和二长岩。锆石U.Pb同位素测年结果表明,岩石侵位时代为(84.0+0.6)Ma,属于晚白垩世,与个旧地区花岗岩、碱性岩和煌斑岩形成年代范围一致(76~85Ma)。贾沙岩体的辉长岩和二长岩Si02为47.3%~60.O%,K20+Na20为7.31%~10.1%。稀土含量较高,轻稀土富集重稀土亏损,Eu异常不明显。相对于原始地幔,贾沙岩体富集轻稀土和大离子亲石元素Rb、K、Pb,亏损高场强元素Nb、Ta、Ti和P。地球化学研究显示贾沙岩体母岩浆起源于与俯冲有关的交代地幔,由石榴子石二辉橄榄岩经历了较低程度的(〈5%)部分熔融形成。原始岩浆在就位过程中经历了广泛的地壳混染和橄榄石、辉石的分离结晶作用。二长岩由辉长岩浆结晶分异作用形成。研究显示,贾沙辉长.二长岩体是晚白垩世滇东南.桂西地区大规模岩浆活动的产物,表明这些岩浆岩形成于统一的岩石圈伸展的动力学背景下。  相似文献   

7.
碧口群火山岩岩石成因研究   总被引:13,自引:1,他引:12  
新元古代(846~776Ma)碧口群火山岩喷发于大陆板内裂谷环境。该火山岩系以基性火山岩为主,酸性火山岩次之,中性火山岩少见。根据岩石地球化学数据,碧口群裂谷基性熔岩总体上属于低Ti/Y(<500)岩浆类型。元素和同位素数据表明,碧口群基性熔岩的化学变化不是由一个共同的母岩浆的结晶分异作用所产生。它们极有可能是源于地幔柱源(εNd(t)≈+3,87Sr/86Sr(t)≈0.704,La/Nb≈0.7)。地壳混染作用对于碧口群裂谷基性熔岩的形成有重要贡献。我们的研究揭示,碧口群火山岩存在空间上的岩石地球化学变化。东部红岩沟和辛田坝—黑木林地区的碧口群基性熔岩以拉斑玄武岩为主,产生于幔源石榴子石稳定区的高度部分熔融。相反,西部白杨—碧口地区的碧口群基性熔岩的母岩浆则是形成于幔源的尖晶石-石榴子石过渡带:碱性熔岩是产生于部分熔融程度较低的条件下,拉斑玄武质熔岩则是产生于部分熔融条件较高的条件下。它们经受了浅层位辉长岩质(cpx+plag±ol)分离作用,化学变异较大。  相似文献   

8.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

9.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

10.
The paper reports data on the Nd isotopic composition and the evaluated composition of the sources of magmatism that produced massifs of alkali and basic rocks of the Khaldzan-Buregtei group. The massifs were emplaced in the terminal Devonian at 392–395 Ma in the Ozernaya zone of western Mongolia. The host rocks of the massifs are ophiolites of the early Caledonian Ozernaya zone, which were dated at 545–522 Ma. The massifs were emplaced in the following succession (listed in order from older to younger): (1) nordmarkites and dolerites syngenetic with them; (2) alkali granites and syngenetic dolerites; (3) dike ekerites; (4) dike pantellerites; (5) rare-metal granitoids; (6) alkali and intermediate basites and quartz syenites; and (7) miarolitic rare-metal alkali granites. Our data on the Nd isotopic composition [?Nd(T)] and conventionally used (canonical) ratios of incompatible elements (Nb/U, Zr/Nb, and La/Yb) in rocks from the alkaline massifs and their host ophiolites indicate that all of these rocks were derived mostly from mantle and mantle-crustal enriched sources like OIB, E-MORB, and IAB with a subordinate contribution of N-MORB (DM) and upper continental crustal material. The variations in the ?Nd(T) values in rocks of these massifs suggest multiple mixing of the sources or magmas derived from them when the massifs composing the Khaldzan-Buregtei group were produced. The OIB and E-MORB sources were mixed when the rocks with mantle signatures were formed. The occurrence of nordmarkites, alkali granites, and other rocks whose isotopic and geochemical signatures are intermediate between the values for mantle and crustal sources testifies to the mixing of mantle and crustal magmas. The crustal source itself, which consisted of rocks of the ophiolite complex, was obviously isotopically and geochemically heterogeneous, as also were the magmas derived from it. The model proposed for the genesis of alkali rocks of the Khaldzan-Buregtei massifs implies that the magmas were derived at two major depth levels: (1) mantle, at which the plume source mixed with an E-MORB source, and (2) crustal, at which the ophiolites were melted, and this gave rise to the parental magmas of the nordmarkites and alkali granites. The basites were derived immediately from the mantle. The mantle syenites, pantellerites, and rare-metal granitoids were produced either by the deep crystallization differentiation of basite magma or by the partial melting of the parental basites and the subsequent crystallization differentiation of the generated magmas. Differentiation likely took place in an intermediate chamber at depth levels close to the crustal (ophiolite) level of magma generation. Only such conditions could ensure the intense mixing of mantle and crustal magmas. The principal factor initiating magma generation in the region was the mantle plume that controlled within-plate magmatism in the Altai-Sayan area and the basite magmas related to this plume, which gave rise to small dikes and magmatic bodies in the group of intrusive massifs.  相似文献   

11.
ABSTRACT

The Tafresh plutons that include Ahmadabab diorite, Vasfonjerd monzonite, Mehrezamin diorite and Chahak diorite, located to the east of Tafresh city, north-central Iran, are part of Urumieh-Dokhtar magmatic arc. U-Pb dating of zircon grains provides emplacement ages of 22.3 ± 1 Ma for the Ahmadabad diorite, and tightly clustered ages of 22.2 ± 0.2 Ma, 21.3 ± 0.2 Ma, and 21.7 ± 0.4 Ma for Vasfonjerd monzodiorite, Mehrezamin diorite-monzonite, and Chahak diorite-monzonite plutons, respectively. These rocks are metaluminous to weakly peraluminous, calc-alkaline, and characterized by enrichment in light rare earth elements, Nb-Ta negative anomalies, and high LILE/HFSE ratios. Tafresh plutonic rocks originated from a parental magma source and experienced different degrees of partial melting. Geochemical signatures of Tafresh plutonic rocks, such as a wide range of Y/Nb (2.7–8.4) and low Zr/Nb (19.5–35.) ratios, Nb/Ta (11.46–18.15), argue for mantle–crust interaction during generation of Tafresh magmas. Relatively low Nb/La ratios further indicate that the lithospheric mantle played a significant role in melt generation. HREE signatures (i.e. decrease Dy/Yb with increasing SiO2) preclude substantial involvement of garnet either in the residue, both during partial melting and fractionation of the magma. The plutons are a product of final stages of subduction-related magmatism prior to the collision between the Arabian and Eurasian tectonic plates.  相似文献   

12.
In recent years extensive data have been obtained on all geologically important intrusive complexes in the Central and Southern Urals by U-Pb zircon geochronologic high spatial resolution techniques (LA ICP MS, NORDSIM, and SHRIMP II). This made it possible to revise the current concepts for the magmatic activity of the Ural Paleozoic orogen.Intrusive magmatism that occurred early in the evolution of the Ural orogen was focused mostly in the Tagil megazone, was characterized by several common features, and took place nearly simultaneously within both of its zones: the Platinum Belt and the Tagil volcanic zone.The composition of the parental magmas of all complexes of this age corresponded to an ultramafic or mafic source; i.e., the magma was derived from a mantle source. The gabbroids most closely approximating the composition of the parental magmatic melts show geochemical features of suprasubduction melts, such as negative HFSE (Nb, Ti, and Zr) and positive Ba and Sr anomalies. The REE patterns of these rocks display variable La/Lu ratios, which are usually higher than 1. These geochemical features suggest that this magmatic source was a metasomatized mantle wedge, above which (at a depth of 40–25 km) a block of the pre-Ural basement occurred in Ordovician-Silurian time. The Tagil megazone started to develop on this block. By the Devonian, i.e., by the time when the Magnitogorsk zone began to evolve (~400 Ma) and continental-margin gabbro-tonalite-granodiorite magmatism was initiated (360 Ma), this basement had been destroyed by orogenesis. The major phases of Paleozoic magmatism in the Urals likely corresponded to global epochs of tectono-magmatic activity, because they correlate well with known data on the evolution of the 87Sr/86Sr ratio in Paleozoic seawater.  相似文献   

13.
The Jurassic–Early Cretaceous Yilashan mafic–ultramafic complex is located in the middle part of the Bangong–Nujiang suture zone, central Tibet. It features a mantle sequence composed of peridotites and a crustal sequence composed of cumulate peridotites and gabbros that are intruded by diabases with some basalts. This article presents new whole-rock geochemical and geochronological data for peridotites, gabbros, diabases and basalts to revisit the petrogenesis and tectonic setting of the Yilashan mafic–ultramafic complex. Zircon laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U–Pb ages of three diabase samples are 169.6 ± 3.3 Ma, 132.5 ± 2.5 Ma, and 133.6 ± 4.9 Ma, respectively. These ages together with previous studies indicate that the Yilashan mafic–ultramafic complex probably formed during the Jurassic–Early Cretaceous. The peridotites exhibit nearly U-shaped REE patterns and are distinct from abyssal peridotites. The diabase and basalt samples show arc features with selective enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILEs; e.g. Rb, U, and Sr) and depletion in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti). The gabbro samples display cumulate features with selective enrichment in LILEs (e.g. Rb, Ba, and Sr) but depletion in LREEs and HFSEs (e.g. Nb, Zr, and Ti). Combing the positive εNd(t) values (+6.1 to +10.0) and negative zircon εHf(t) values (–16.5 to –11.7 and –13.6 to –0.4) with older Hf model ages for the mafic rocks, these signatures suggest that the Yilashan mafic and ultramafic rocks likely originated from an ancient lithospheric mantle source with the addition of asthenospheric mantle materials and subducted fluids coupled with limited crustal contamination in a continental arc setting as a result of the southward subduction of the Bangong–Nujiang Tethys Ocean beneath the Lhasa terrane during the Jurassic–Early Cretaceous.  相似文献   

14.
ABSTRACT

The Tayuan plutons located at the boundary of the Erguna and Xing’an blocks expose a coexisting mafic–felsic association that is made of monzogranite and gabbro-monzodiorite as well as subordinate quartz monzonite. LA–ICP–MS U–Pb zircon dating revealed a synchronous emplacement of the monzogranite (314–317 Ma), gabbro (308–315 Ma), and quartz monzonite (310 ± 3 Ma). The majority of these intrusions are characterized by an enrichment in light rare earth elements relative to heavy rare earth elements and a depletion of high strength field elements (e.g. Nb, Ta, Ti). Zircons from the gabbro and monzogranite have εHf(t) values of 1.1–9.6 and ?3.0–3.3, respectively. Geochemical data show that the gabbro-monzodiorite may have been generated by the melting of a fluid-metasomatized lithospheric mantle, while the monzogranite may have been formed by a partial melting of the Mesoproterozoic crust. The quartz monzonite has similar whole-rock geochemical and Hf isotopic compositions to those of the gabbros and could have been produced from the same mantle source as that from which the gabbros were extracted. The Tayuan plutonic rocks have high contents of K2O and total alkalis and show a northwestward polarity like that of the continental margin plutonic rocks along the Hegenshan–Heihe suture zone. Combined with data from published studies, our data indicate that the Tayuan intrusive rocks were generated by the northwestward subduction of the Hegenshan–Heihe Oceanic plate.  相似文献   

15.
尤敏鑫 《地质与勘探》2017,53(5):903-914
黄山南镁铁-超镁铁质岩体位于东天山造山带觉罗塔格构造带内,与构造带内一系列镁铁-超镁铁质岩体构成了东天山镁铁-超镁铁质岩带。黄山南岩体锆石U-Pb同位素定年得到293.7±3.1Ma的加权平均年龄,显示其形成年龄为早二叠世。岩石样品镁铁比值m/f比值介于4.45~6.37之间,属于铁质超基性岩;利用橄榄石最高Fo值计算得到黄山南岩体母岩浆的Mg~#值为0.70,表明其母岩浆成分与原生岩浆较为接近,具有高镁拉斑玄武岩质岩浆的性质,且演化程度较低或母岩浆有过剩橄榄石堆晶的加入。Ba/La、Ba/Nb、Ba/Th、Rb/Nb、Th/Nb和Sm/Yb等微量元素比值表明黄山南岩体的岩浆源区可能为一被俯冲板片沉积物和流体改造过的较富集的岩石圈地幔。主量元素变化特征显示了岩浆结晶分异作用的一般特征;较高的Ba/Nb比值,相对高的La/Nb和低La/Ba值以及Ni-Ta-(Ti)元素的负异常表明岩浆上升过程中可能经历了地壳物质的混染作用。黄山南岩体年龄及岩石地球化学特征综合表明其能够代表东天山地区地幔岩浆演化早期阶段的产物,具有较好的成矿潜力。  相似文献   

16.
Allochthonous hornblende‐rich gabbroic rocks at Sonidzuoqi constitute important components of the early to middle Palaeozoic orogen, which forms the southeastern part of the Central Asian orogenic belt in Inner Mongolia. Limited hornblende K–Ar and SHRIMP U–Pb zircon ages document the Late Silurian to Early Devonian gabbroic emplacement. The rocks are tholeiitic and are characterized by moderate large‐ion‐lithophile‐element (e.g. Th, U) abundances, high‐field‐strength‐element (e.g. Nb, Ta, Zr, Ti) depletions, high Ti/V ratios, and MORB‐like isotopic signatures [(87Sr/86Sr)i≈0.7030 to 0.7042; εNd(t)≈+4.35 to +7.80, (206Pb/204Pb)i≈17.46 to 17.61]. These features argue for a hydrous basaltic parental magma. We postulate that the melt formed through the coupling of MORB‐type mantle upwelling with aqueous fluid influx derived from slab devolatilization. This petrogenetic scenario suggests that an active spreading centre entered the trench during ridge subduction, bringing to a close an episode of suprasubduction‐zone ophiolite formation. The Siluro‐Devonian hornblende gabbros, together with a pre‐490 Ma ophiolitic mélange of MORB‐OIB affinity, ~483–471 Ma arc intrusions, ~498–461 Ma trondhjemite‐tonalite‐granodiorite plutons, and ~427–423 Ma calc‐alkaline granites from the same area, provide documentation of multistage crustal generation processes during the life cycle of this suprasubduction‐zone ophiolite.  相似文献   

17.
班公湖-怒江缝合带西段出露大量中酸性侵入岩,为特提斯洋俯冲、拉萨地块与羌塘地块碰撞造山过程中岩浆响应的重要组成部分。本文对该缝合带西段阿翁错地区的闪长岩、花岗闪长岩和花岗岩进行了详细的岩石地球化学和锆石U-Pb年代学研究。锆石LA-ICP-MS U-Pb定年结果表明闪长岩、花岗闪长岩、花岗岩成岩年龄分别为119.3±1.8 Ma、114.7±1.4 Ma和103.2±1.3 Ma。岩石地球化学特征显示中酸性侵入岩属高钾钙碱性系列,具准铝质-弱过铝质I型花岗岩特征;其LREE分馏程度较高,而HREE近于平坦,存在Eu负异常;富集Rb、La等大离子亲石元素和Th、Zr、Hf等高场强元素,亏损Nb、Ta、P、Ti等高场强元素,具有岛弧岩浆岩的特征。研究结果表明在早白垩世晚期(103.0±1.3 Ma)班公湖-怒江特提斯洋壳仍在向北俯冲于南羌塘地块之下,随着俯冲深度增加,大洋板片发生大规模脱水,释放的流体交代地幔楔并引发其部分熔融,产生的幔源岩浆向上运移,与下地壳物质不同比例混合形成了闪长岩和花岗闪长岩;而花岗岩主要由古老下地壳物质部分熔融形成,并有少量地幔物质的参与。  相似文献   

18.
华北板块北缘中段土牧尔台地区发育大量的酸性侵入岩,仅局部出露一些苏长辉长岩岩体.前人对该基性岩岩体的研究较少,且缺少其与周围同时代酸性侵入岩演化关系的讨论.基于年代学和地球化学方法,锆石U-Pb测年结果显示,花岗闪长岩年龄为275.3±2.6 Ma,苏长辉长岩为270.1±4.2 Ma,两者均为早二叠世产出.苏长辉长岩贫硅(SiO2=46.2%~49.8%)和高场强元素(Nb、Ti、Zr等),富Mg#(59.16~67.58)和大离子亲石元素(Cs、Ba、Sr等),具有较低的稀土总量和较平缓的配分曲线,及Eu正异常(δEu=1.02~2.41),显示幔源侵入岩的特点;花岗闪长岩SiO2含量在65.6%~67.0%之间,K2O含量为3.71%~4.15%,为准铝质系列(A/CNK=0.94~0.98),属于高钾钙碱性I型花岗岩.样品富集轻稀土、大离子亲石元素(Cs、Rb、K等),亏损重稀土元素、高场强元素(Nb、Ti、Th等),存在Eu负异常(δEu=0.61~0.69),具有大陆弧火山岩的特征,同时岩石中存在镁铁质包体,表明其岩浆来源是壳幔混源的.两者的时空关系及地球化学特征显示,基性岩浆来自于受俯冲流体交代的亏损岩石圈地幔,底侵加热地壳产生花岗质岩浆并与之发生混合作用.结合区域研究背景,表明花岗闪长岩-苏长辉长岩岩体形成于俯冲的构造背景下,且在早二叠世,古亚洲洋仍未闭合.   相似文献   

19.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   

20.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号