首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Benefit–cost analysis can serve as an informative input into the policy-making process, but only to the degree it characterizes the major impacts of the regulation under consideration. Recently, the US, amongst other nations, has begun to use estimates of the social cost of CO2 (SC-CO2) to develop analyses that more fully capture the climate change impacts of GHG abatement. The SC-CO2 represents the aggregate willingness to pay to avoid the damages associated with an additional tonne of CO2 emissions. In comparison, the social costs of non-CO2 GHGs have received little attention from researchers and policy analysts, despite their non-negligible climate impact. This article addresses this issue by developing a set of social cost estimates for two highly prevalent non-CO2 GHGs, methane and nitrous oxide. By extending existing integrated assessment models, it is possible to develop a set of social cost estimates for these gases that are consistent with the SC-CO2 estimates currently in use by the US federal government.Policy relevanceWithin the benefit–cost analyses that inform the design of major regulations, all Federal agencies within the US Government (USG) use a set of agreed upon SC-CO2 estimates to value the impact of CO2 emissions changes. However, the value of changes in non-CO2 GHG emissions has not been included in USG policy analysis to date. This article addresses that omission by developing a set of social cost estimates for two highly prevalent non-CO2 GHGs, methane and nitrous oxide. These new estimates are designed to be compatible with the USG SC-CO2 estimates currently in use and may therefore be directly applied to value emissions changes for these non-CO2 gases within the benefit–cost analyses used to evaluate future policies.  相似文献   

2.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm^-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm^-1 are taken as a new singlemixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H20 line and continuum in the 2500-14500 cm^-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm^-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm^-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm^-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (-12 W m^-2) among which the H20 continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m^-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

3.
Abstract

A coupled 1‐D radiative‐convective and photochemical diffusion model is used to study the influence of ozone photochemistry on changes in the vertical temperature structure and surface climate resulting from the doubling of atmospheric CO2, N2O, CH4 and increased stratospheric aerosols owing to the El Chichón volcanic eruption. It is found when CO2 alone is doubled, that the total ozone column increases by nearly 6% and the resulting increase in the solar heating contributes a smaller temperature decrease in the stratosphere (up to 4 K near the stratopause level). When the concentration of CO2, N2O and CH4 are simultaneously doubled, the total ozone column amount increases by only 2.5% resulting in a reduced temperature recovery in the stratosphere. Additional results concerning the effect of the interaction of ozone photochemistry with the stratospheric aerosol cloud produced by the El Chichón eruption show that it leads to a reduction in stratospheric ozone, which in turn has the effect of increasing the cooling at the surface and above the cloud centre while causing a slight warming below in the lower stratosphere.  相似文献   

4.
Gas exchange experiments were conducted in the tropical Atlantic Ocean during a ship expedition with FS Meteor using a small rubber raft. The temporal change of the mixing ratios of CO, H2, CH4 and N2O in the headspace of a floating glass box and the concentrations of these gases in the water phase were measured to determine their transfer velocities across the ocean-atmosphere interface. The ocean acted as a sink for these gases when the water was undersaturated with respect to the mixing ratio in the headspace. The transfer velocities were different for the individual gases and showed still large differences even when normalized for diffusivity. Applying the laminar film model, film thicknesses of 20 to 70 m were calculated for the observed flux rates of the different gas species. When the water was supersaturated with respect to atmospheric CO, H2, CH4 and N2O, the transfer velocities of the emission process were smaller than those determined for the deposition process. In case of H2 and CH4, emission was even not calculable although, based on the observed gradient, the laminar film model predicted significant fluxes at the air-sea interface. The results are interpreted by destruction processes active within the surface microlayer.  相似文献   

5.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

6.
J. H. van Hateren 《Climate Dynamics》2013,40(11-12):2651-2670
A climate response function is introduced that consists of six exponential (low-pass) filters with weights depending as a power law on their e-folding times. The response of this two-parameter function to the combined forcings of solar irradiance, greenhouse gases, and SO2-related aerosols is fitted simultaneously to reconstructed temperatures of the past millennium, the response to solar cycles, the response to the 1991 Pinatubo volcanic eruption, and the modern 1850–2010 temperature trend. Assuming strong long-term modulation of solar irradiance, the quite adequate fit produces a climate response function with a millennium-scale response to doubled CO2 concentration of 2.0 ± 0.3 °C (mean ± standard error), of which about 50 % is realized with e-folding times of 0.5 and 2 years, about 30 % with e-folding times of 8 and 32 years, and about 20 % with e-folding times of 128 and 512 years. The transient climate response (response after 70 years of 1 % yearly rise of CO2 concentration) is 1.5 ± 0.2 °C. The temperature rise from 1820 to 1950 can be attributed for about 70 % to increased solar irradiance, while the temperature changes after 1950 are almost completely produced by the interplay of anthropogenic greenhouse gases and aerosols. The SO2-related forcing produces a small temperature drop in the years 1950–1970 and an inflection of the temperature curve around the year 2000. Fitting with a tenfold smaller modulation of solar irradiance produces a less adequate fit with millennium-scale and transient climate responses of 2.5 ± 0.4 and 1.9 ± 0.3 °C, respectively.  相似文献   

7.
A high resolution global model of the terrestrial biosphere is developed to estimate changes in nitrous oxide (N2O) emissions from 1860–1990. The model is driven by four anthropogenic perturbations, including land use change and nitrogen inputs from fertilizer, livestock manure, and atmospheric deposition of fossil fuel NO x . Global soil nitrogen mineralization, volatilization, and leaching fluxes are estimated by the model and converted to N2O emissions based on broad assumptions about their associated N2O yields. From 1860–1990, global N2O emissions associated with soil nitrogen mineralization are estimated to have decreased slightly from 5.9 to 5.7 Tg N/yr, due mainly to land clearing, while N2O emissions associated with volatilization and leaching of excess mineral nitrogen are estimated to have increased sharply from 0.45 to 3.3 Tg N/yr, due to all four anthropogenic perturbations. Taking into account the impact of each perturbation on soil nitrogen mineralization and on volatilization and leaching of excess mineral nitrogen, global 1990 N2O emissions of 1.4, 0.7, 0.4 and 0.08 Tg N/yr are attributed to fertilizer, livestock manure, land clearing and atmospheric deposition of fossil fuel NO x , respectively. Consideration of both the short and long-term fates of fertilizer nitrogen indicates that the N2O/fertilizer-N yield may be 2% or more.C. NBM Definitions AET mon (cm H2O) = monthly actual evapotranspiration - AET ann (cm H2O) = annual actual evapotranspiration - age h (years) = stand age of herbaceous biomass - age w (years) = stand age of woody biomass - atmblc (gC/m2/month) = net flux of CO2 from grid - biotoc (gC/g biomass) = 0.50 = convert g biomass to g C - beff h = 0.8 = fraction of cleared herbaceous litter that is burned - beff w = 0.4 = fraction of cleared woody litter that is burned - bfmin = 0.5 = fraction of burned N litter that is mineralized or converted to reactive gases which rapidly redeposit. Remainder assumed pyrodenitrified to N2. + N2O - bprob = probability that burned litter will be burned - burn h (gC/m2/month) = herbaceous litter burned after land clearing - burn w (gC/m2/month) = woody litter burned after land clearing - cbiomsh (gC/m2) = C herbaceous biomass pool - cbiomsw (gC/m2) = C woody biomass pool - clear (gC/m2/month) = woody litter C removed by land clearing - clearn (gN/m2/month) = woody litter N removed by land clearing - cldh (month–1) = herbaceous litter decomposition coefficient - cldw (month–1) = woody litter decomposition coefficient - clittrh (gC/m2) = C herbaceous litter pool - clittrw (gC/m2) = C woody litter pool - clph (month–1) = herbaceous litter production coefficient - clpw (month–1) = woody litter production coefficient - cnrath (gC/gN) = C/N ratio in herbaceous phytomass - cnrats (gC/gN) = C/N ratio in soil organic matter - cnratt (gC/gN) = average C/N ratio in total phytomass - cnratw (gC/gN) = C/N ratio in woody phytomass - crod (month–1) = forest clearing coefficient - csocd (month–1) = actual soil organic matter decompostion coefficient - decmult decomposition coefficient multiplier; natural =1.0; agricultural =1.0 (1.2 in sensitivity test) - fertmin (gN/m2/month) = inorganic fertilizer input - fleach fraction of excess inorganic N that is leached - fligh (g Lignin/ g C) = lignin fraction of herbaceous litter C - fligw (g Lignin/ g C) = 0.3 = lignin fraction of woody litter C - fln2o = .01–.02 = fraction of leached N emitted as N2O - fnav = 0.95 = fraction of mineral N available to plants - fosdep (gN/m2/month) = wet and dry atmospheric deposition of fossil fuel NO x - fresph = 0.5 = fraction of herbaceous litter decomposition that goes to CO2 respiration - fresps = 0.51 + .068 * sand = fraction of soil organic matter decomposition that goes to CO2 respiration - frespw = 0.3 * (* see comments in Section 2.3 under decomposition) = fraction of woody litter decomposition that goes to CO2 respiration - fsoil = ratio of NPP measured on given FAO soil type to NPFmiami - fstruct = 0.15 + 0.018 * ligton = fraction of herbaceous litter going to structural/woody pool - fvn2o = .05–.10 = fraction of excess volatilized mineral N emitted as N2O - fvol = .02 = fraction of gross mineralization flux and excess mineral N volatilized - fyield ratio of total agricultural NPP in a given country in 1980 to total NPPmiami of all displaced natural grids in that country - gimmob h (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of herbaceous litter - gimmob s (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of soil organic matter - gimmob w (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of woody litter - graze (gC/m2/month) = C herbaceous biomass grazed by livestock - grazen (gN/m2/month) = N herbaceous biomass grazed by livestock - growth h (gC/m2/month) = herbaceous litter incorporated into microbial biomass - growth w (gC/m2/month) = woody litter incorporated into microbial biomass - gromin h (gN/m2/month) = gross N mineralization due to decomposition and burning of herbaceous litter - gromin s (gN/m2/month) = gross N mineralization due to decomposition of soil organic matter - gromin w (gN/m2/month) = gross N mineralization due to decomposition and burning of woody litter - herb herbaceous fraction by weight of total biomass - leach (gN/m2/month) = leaching (& volatilization) losses of excess inorganic N - ligton (g lignin-C/gN) = lignin/N ratio in fresh herbaceous litter - LP h (gC/m2/month)= C herbaceous litter production - LP (gC/m2/month) = C woody litter production - LPN h (gN/m2/month) = N herbaceous litter production - LPN W (gN/m2/month) = N woody litter production - manco2 (gC/m2/month) = grazed C respired by livestock - manlit (gC/m2/month) = C manure input (feces + urine) - n2oint (gN/m2/month) = intercept of N2O flux vs gromin regression - n2oleach (gN/m2/month) = N2O flux associated with leaching and volatilization of excess inorganic N - n2onat (gN/m2/month) = natural N2O flux from soils - n2oslope slope of N2O flux vs gromin regression - nbiomsh (gN/m2) = N herbaceous biomass pool - nbiomsw (gN/m2) = N woody biomass pool - nfix (gN/m2/month) = N2 fixation + natural atmospheric deposition - nlittrh (gN/m2) = N herbaceous litter pool - nlittrw (gN/m2) = N woody litter pool - nmanlit (gN/m2/month) = organic N manure input (feces) - nmanmin (gN/m2/month) = inorganic N manure input (urine) - nmin (gN/m2) = inorganic N pool - NPP acth (gC/m2/month)= actual herbaceous net primary productivity - NPP actw (gC/m2/month) = actual woody net primary productivity - nvol (gN/m2/month) = volatilization losses from inorganic N pool - plntnav (gN/m2/month)= mineral N available to plants - plntup h (gN/m2/month) = inorganic N incorporated into herbaceous biomass - plntup w (gN/m2/month) = inorganic N incorporated into woody biomass - precip ann (mm) = mean annual precipitation - precip mon (mm) = mean monthly precipitation - pyroden h (gN/m2/month) = burned herbaceous litter N that is pyrodenitrified to N2 - pyroden w (gN/m2/month) = burned woody litter N that is pyrodenitrified to N2 - recyc fraction of N that is retranslocated before senescence - resp h (gC/m2/month) = herbaceous litter CO2 respiration - resp s (gC/m2/month) = soil organic carbon CO2 respiration - resp w (gC/m2/month) = woody litter CO2 respiration - sand sand fraction of soil - satrat ratio of maximum NPP to N-limited NPP - soiloc (gC/m2) = soil organic C pool - soilon (gN/m2) = soil organic N pool - temp ann (°C) = mean annual temperature - temp mon (°C) = mean monthly temperature Now at the NOAA Aeronomy Laboratory, Boulder, Colorado.  相似文献   

8.
Abstract

Present‐day results and CO2 sensitivity are described for two versions of a global climate model (genesis) with and without sea‐ice dynamics. Sea‐ice dynamics is modelled using the cavitating‐fluid method of Flato and Hibler (1990, 1992). The atmospheric general circulation model originated from the NCAR Community Climate Model version 1, but is heavily modified to include new treatments of clouds, penetrative convection, planetary boundary‐layer mixing, solar radiation, the diurnal cycle and the semi‐Lagrangian transport of water vapour. The surface models include an explicit model of vegetation (similar to BATS and SiB), multilayer models of soil, snow and sea ice, and a slab ocean mixed layer.

When sea‐ice dynamics is turned off, the CO2‐induced warming increases drastically around ~60–80°S in winter and spring. This is due to the much greater (and unrealistic) compactness of the Antarctic ice cover without dynamics, which is reduced considerably when CO2 is doubled and exposes more open ocean to the atmosphere. With dynamics, the winter ice is already quite dispersed for 1 × CO2 so that its compactness does not decrease as much when CO2 is doubled.  相似文献   

9.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m~2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

10.
Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052 cm–1 resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44° N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246 cm–1 band. Assuming a total intensity of 4.32×10–17 cm–1/molecule cm–2 independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10–9), interpolated to 2 km height spacings, are 1.64±0.49 at 37.5 km, 1.92±0.56 at 35.5 km, 2.06±0.47 at 33.5 km, 1.95±0.42 at 31.5 km, 1.60±0.33 at 29.5 km, 1.26±0.28 at 27.5 km, and 0.85±0.20 at 25.5 km. Error bars indicate the estimated 1- uncertainty including the error in the total band intensity (±20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.Laboratoire associé aux Universités Pierre et Marie Curie et Paris Sud.  相似文献   

11.
Compact two-channel IR radiometers for solar occultation experiments have been constructed in order to measure concentration profiles of stratospheric trace gases. The instruments can be used as filter-or gas correlation-type radiometers depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the gas correlation-type measurements, profiles of the trace gas NO2 are inferred for the altitude region between about 20 km and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the NO2 profiles. The derived profiles are compared among themselves and are assessed against the observations of other authors by accounting for the diurnal, latitudinal and seasonal changes of NO2. As a by-product of our measurements, the mean absorption of the O2 collision-induced band at 6.4 m was determined within the range of the interference filter used and compared with calculations based on known absorption coefficients.  相似文献   

12.
Summary A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.With 14 Figures  相似文献   

13.
One-dimensional radiative-convective and photochemical models are used to examine the effects of enhanced CO2 concentrations on the surface temperature of the early Earth and the composition of the prebiotic atmosphere. Carbon dioxide concentrations of the order of 100–1000 times the present level are required to compensate for an expected solar luminosity decrease of 25–30%, if CO2 and H2O were the only greenhouse gases present. The primitive stratosphere was cold and dry, with a maximum H2O volume mixing ratio of 10–6. The atmospheric oxidation state was controlled by the balance between volcanic emission of reduced gases, photo-stimulated oxidation of dissolved Fe+2 in the oceans, escape of hydrogen to space, and rainout of H2O2 and H2CO. At high CO2 levels, production of hydrogen owing to rainout of H2O2 would have kept the H2 mixing ratio above 2×10–4 and the ground-level O2 mixing ratio below 10–11, even if no other sources of hydrogen were present. Increased solar UV fluxes could have led to small changes in the ground-level mixing ratios of both O2 and H2.  相似文献   

14.
Surface ozone is mainly produced by the photodissociation of nitrogen dioxide (NO2) by solar UV radiation. Subsequently, solar eclipses provide one of the unique occasions to explore the variations in the photolysis rate of NO2 and their significant impact on the production of ozone at a location. This study aims to examine the diurnal variations in the photodissociation rate coefficient of NO2, (j(NO2*)), and mixing ratios of surface ozone and NO X * (NO?+?NO2*) during the solar eclipse that occurred on 15 January 2010 at Kannur (11.9°N, 75.4°E, 5?m amsl), a tropical coastal site on the Arabian Sea in South India. This investigation was carried out on the basis of the ground level observations of surface ozone and its prominent precursor NO2*. The j(NO2*) values were estimated from the observed solar UV-A flux data. A sharp decline in j(NO2*) and surface ozone was observed during the eclipse phase because of the decreased efficiency of the ozone formation from NO2. The NO2* levels were found to increase during this episode, whereas the NO levels remained unchanged. The surface ozone concentration was reduced by 57.5%, whereas, on the other hand, that of NO X * increased by 62.5% during the solar eclipse. Subsequently a reduction of *% in the magnitude of j(NO2*) was found here during the maximum obscuration. Reductions in solar insolation, air temperature and wind speed were also observed during the solar eclipse event. The relative humidity showed a 6.4% decrease during the eclipse phase, which was a unique observation at this site.  相似文献   

15.
An experimental investigation of the simultaneous absorption of NH3 and SO2 from the ambient atmosphere by freely falling water drops has been carried out in the Mainz vertical wind tunnel. The experimental results were found to be in good agreement with the results derived from computations with the Kronig-Brink convective diffusion model and also with a model which assumes a drop to be well mixed at all times. Encouraged by this agreement, these computation schemes for the uptake of gas by single drops where incorporated in a pollution washout model with realistic SO2, NH3 and CO2 gas profiles. This model allows an entire raindrop size distribution to fall through a gas layer. The results of this plume-model show that the SO2 uptake is strongly dependent on the NH3 concentration in the atmosphere and on the rainrate. We also find that the small drops contribute more towards the washout of these gases. In the case of simultaneous presence of NH3 and SO2, desorption of these gases is negligible.  相似文献   

16.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

17.
The metric governing the trade-off between different greenhouse gases in the Kyoto Protocol, the Global Warming Potentials (GWPs), has received ample critique from both scientific and economic points of view. Here we use an integrated climate-economic optimization model to estimate the cost-effective trade-off between CO2, CH4 and N2O when meeting a temperature stabilization target. We then estimate the increased cost from using GWPs when meeting the same temperature target. Although the efficient valuation of the gases differs significantly from their respective GWPs, the potential economic benefit of valuing them in a more correct way amounts to 3.8 percent of the overall costs of meeting the temperature stabilization target in the base case. In absolute value, this corresponds to an additional net present value cost of US$2000100 billion. To corroborate our findings we perform a Monte Carlo-analysis where several key parameters are randomly varied simultaneously. The result from this exercise shows that our main result is robust to a wide range of changes in the key parameter values, giving a median economic loss from using GWPs of 4.2 percent.  相似文献   

18.
The relative variances in stratospheric observations of longlived trace gases CH4, N2O, CF2Cl2, CFCl3 show large differences. These differences are greatly reduced when the local mean standard deviation is normalized to the local vertical gradient. This ratio, called ‘equivalent displacement height’ exhibits a characteristic vertical profile which is very similar for all the longlived trace gases, as well as for O3. With the help of this ratio, it is demonstrated that the variances are essentially due to natural causes, i.e., transport. Using the mixing length hypothesis a theoretical expression for the equivalent displacement height is derived. From it the meridional slope of the mixing surfaces and the mixing length can be calculated as function of the altitude. Additional information is obtained on the variance of that slope. The uncertainty of the measured mean trace gas profiles is defined.  相似文献   

19.
Since 1984, about 15000 high quality infrared solar spectra have beenrecorded with state-of-the-art grating and Fourier transform spectrometersat the International Scientific Station of the Jungfraujoch, Switzerland.Nonlinear least squares spectral curve fitting of selected microwindowscontaining isolated and well characterized lines of 20 telluric gases haveallowed to retrieve their total vertical column abundances above thestation, leading to observational data bases essential to derive long- andshort-term changes experienced by these species during the last 12 years. Inthis paper, we focus on atmospheric gases of particular interest within thecontext of the EUROTRAC/TOR (Tropospheric Ozone Research) project; secularevolution as well as seasonal cycles of the minor constituentsCH4, CO and of the trace gasesC2H6, OCS, C2H2, HCNand H2CO are reported and discussed. The long-livedN2O is included as a tracer of the dynamic activity of theatmosphere.  相似文献   

20.
A system capable of measuring the fluxes of trace gases was developed. It is based on a simpler version of the eddy-accumulation technique (EA), known as the relaxed eddy-accumulation technique (REA). It accumulates air samples associated with updrafts and downdrafts at a constant flow rate in two containers for later analysis of the trace gas mean concentration. The flux integration is based on the durations of updraft and downdraft events, rather than on the vertical wind velocity (W) as is the case for EA and eddy-correlation (EC) techniques. The flux, calculated by the REA technique, is equal to the difference in the mean concentration of the trace gas of interest between the upward and downward moving eddies, multiplied by the standard deviation of the vertical wind velocity and an empirical coefficient. CO2 fluxes measured for 162 half-hour periods over a soybean field by both EC and REA techniques showed excellent agreement (coefficient of determination,R 2=0.92). The slope (0.985) and the intercept (–0.042 mg m–2 s–1) were not significantly different from 1 and 0, respectively, at the 5% level; and the standard error of estimate was 0.074 mg m–2 s–1. It is also shown that the empirical coefficient can be calculated from either latent or sensible heat fluxes. A model describing the effect on this empirical coefficient of not sampling aroundW equal to zero is proposed.Centre for Land and Biological Resources Research Contribution No. 92-212.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号