首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic behaviour of masonry buildings, built of low compressive strength units, is discussed. Although such materials have already been tested and approved for use from mechanical and thermal insulation point of view, the knowledge regarding their structural behaviour is still lacking. In order to investigate the resistance and deformation capacity of this particular type of masonry construction in seismic conditions, a series of eight walls and model of a two-storey full scale confined masonry building have been tested by subjecting the specimens to cyclic shear loads. All tests were conducted under a combination of constant vertical load and quasi static, cyclically imposed horizontal load. The behaviour of tested specimens was of typical shear type. Compared with the behaviour of plain masonry walls, the presence of tie-columns resulted into higher resistance and displacement capacity, as well as smaller lateral resistance degradation. The response of the model was determined by storey mechanism with predominant shear behaviour of the walls and failure mechanism of the same type as in the case of individual confined masonry walls. Adequate seismic behaviour of this particular masonry structural type can be expected under the condition that the buildings are built as confined masonry system with limited number of stories.  相似文献   

2.
Most of the studies related to the modeling of masonry structures have by far investigated either the in‐plane (IP) or the out‐of‐plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load‐bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement‐controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the results of the tests on walls with different failure modes conducted by the authors. Afterward, the response of the wall systems is evaluated with increasing top displacement having different orientations. A set of 19 monotonic and three cyclic loading analyses are performed, and the results are discussed in terms of the variation of failure modes and load–displacement diagrams. Moreover, the results of wall capacity in each loading condition are compared with those of the ASCE41‐06 formulations. The results indicate that the direction of the resultant force, vectorial summation of IP and OP forces, of the wall is initially proportional to the ratio of stiffness in the IP and the OP directions. However, with the increase of damage, the resultant force direction inclines towards the wall's longitudinal direction regardless of the direction of the imposed displacement. Finally, recommendations are made for applicability of ASCE41‐06 formulations under different bidirectional loading conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
An analytical model describing the flexural response of vertically spanning out‐of‐plane loaded unreinforced masonry walls is presented in this paper. The model is based on the second‐order Euler‐Bernoulli beam theory and captures important characteristics of the out‐of‐plane response of masonry walls that have been observed in experimental tests and from numerical studies but for which an analytical solution was still lacking: the onset and the evolution of cracking, the peak strength of the out‐of‐plane loaded walls, and the softening of the response due to P ?Δ effects. The model is validated against experimental results, and the comparison shows that the model captures both the prepeak and postpeak response of the walls. From the analytical model of the force‐displacement curve, a formula for the maximum out‐of‐plane strength of the walls is derived, which can be directly applied in engineering practice.  相似文献   

6.
Traditional non-reinforced masonry walls are particularly prone to failure when subjected to out-of-plane loads and displacements caused by earthquakes. Moreover, singularities such as openings in fa?ades may trigger local collapse, for either in-plane or out-of plane motion. Bearing in mind all the former limitations, STAP, with the scientific support of ICIST and LNEC, has been developing a reduced intrusiveness seismic strengthening methodology for traditional masonry structures. The technique consists in externally applying Glass Fibre Reinforced Polymer (GFRP) composite strips to one or both faces of walls. Connection between GFRP composite strips and masonry substrate is enhanced through specifically detailed anchorages or confinement connectors. This technique has been developed and studied through an extensive series of experimental tests, which are briefly reviewed. This paper focuses more deeply on the latest experimental program, aimed at the characterization of the masonry-GFRP composite interface behaviour. This testing program comprised 29 masonry specimens, strengthened with externally bonded GFRP composite strips with anchorages. The testing variables were the number and spacing of anchorages as well as the loading history type: monotonic or repeated. Results clearly show that the use of anchorages dramatically enhances bond behaviour and that its number and spacing have a significant effect on deformation capacity and a less pronounced effect on strength. Based on experimental evidence, this paper also provides a calculation model and ULS safety assessment procedure for out-of-plane strength of reinforced masonry walls. This calculation model leads to interaction curves on strengthened masonry walls subjected to compression and out-of-plane flexure.  相似文献   

7.
The in‐plane cyclic behaviour of three types of unreinforced clay masonry was characterized by means of laboratory tests on full‐scale specimens. The masonry walls were assembled with various bonding arrangements (head joints made with mortar pockets, dry head joints with mechanical interlocking, thin‐layer mortar bed joints), which are not yet inserted in seismic codes. Experimental behaviour was modelled with an analytical hysteretic model able to predict lateral load–displacement curves in case of shear failure of the unreinforced walls. According to the experimental results and those of the selected analytical model, parametric study to evaluate the reduction in lateral strength demand produced by non‐linear behaviour in masonry walls, i.e. the load reduction factor was carried out by non‐linear dynamic analyses. The calculated values of the load reduction factor were modest. The differences in values found for the three masonry types, although consistent with them, were not great. This may indicate that, in the ultimate limit state, the type of masonry cannot significantly affect the behaviour of an entire building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the results of an experimental study on the determination of damping characteristics of bare, masonry infilled, and carbon fiber reinforced polymer retrofitted infilled reinforced concrete (RC) frames. It is well known that the masonry infills are used as partitioning walls having significant effect on the damping characteristics of structures as well as contribution to the lateral stiffness and strength. The main portion of the input energy imparted to the structure during earthquakes is dissipated through hysteretic and damping energies. The equivalent damping definition is used to reflect various damping mechanisms globally. In this study, the equivalent damping ratio of carbon fiber reinforced polymer retrofitted infilled RC systems is quantified through a series of 1/3‐scaled, one‐bay, one‐story frames. Quasi‐static tests are carried out on eight specimens with two different loading patterns: one‐cycled and three‐cycled displacement histories and the pseudo‐dynamic tests performed on eight specimens for selected acceleration record scaled at three different PGA levels with two inertia mass conditions. The results of the experimental studies are evaluated in two phases: (i) equivalent damping is determined for experimentally obtained cycles from quasi‐static and pseudo‐dynamic tests; and (ii) an iterative procedure is developed on the basis of the energy balance formulation to determine the equivalent damping ratio. On the basis of the results of these evaluations, equivalent damping of levels of 5%, 12%, and 14% can be used for bare, infilled, and retrofitted infilled RC frames, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The vulnerability of infilled frames represents a critical issue in many regions with high seismicity around the world where infills are typically made of heavy masonry as they are used for thermal control of the buildings because of their thermal inertia. In this context, the use of earthen masonry infills can give a superior performance because of their ability to regulate thermal‐hygrometric performance of the building and sustainability of its life‐cycle. This paper presents a numerical study on the seismic behaviour of infill walls made of earthen masonry and partitioned with horizontal wooden planks that allow the relative sliding of the partitions. The combination of the deformability of earthen masonry and the sliding mechanism occurring along the wooden planks gives a high ductility capacity to the in‐plane response of the infill and, at the same time, significantly reduces its stiffness and strength, as compared with traditional solid infills made of fired clay units. As a result, the detrimental interaction with the frame and the damage in the infill when subjected to in‐plane loading can be minimized. The numerical model is validated with results from an experimental study and is used to perform a parametric analysis to examine the influence of variations in the geometry and mechanical properties of the infill walls, as well as the configuration of the sliding joints. Based on the findings of this study, design guidelines for practical applications are provided, together with simple formulation for evaluating their performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper addresses the problem of assessing the seismic resistance of brick masonry walls subject to out‐of‐plane bending. A simplified linearized displacement‐based procedure is presented along with recommendations for the selection of an appropriate substitute structure in order to provide the most representative analytical results. A trilinear relationship is used to characterize the real nonlinear force–displacement relationship for unreinforced brick masonry walls. Predictions of the magnitude of support motion required to cause flexural failure of masonry walls using the linearized displacement‐based procedure and quasi‐static analysis procedures are compared with the results of experiments and non‐linear time‐history analyses. The displacement‐based procedure is shown to give significantly better predictions than the force‐based method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Seismic response of unreinforced masonry (URM) buildings is largely influenced by nonlinear behavior of spandrels, which provide coupling between piers under in‐plane lateral actions. Seismic codes do not appropriately address modeling and strength verification of spandrels, adapting procedures originally proposed for piers. Therefore, research on spandrels has received significant attention in some earthquake‐prone countries, such as Italy and New Zealand. In the last years, the authors of this paper have performed both monotonic and cyclic in‐plane lateral loading tests on full‐scale masonry walls with single opening and different spandrel types. Those tests were carried out in a static fashion and with displacement control. In this paper, experimental outcomes for two as‐built specimens are presented and compared with those obtained in the past for another as‐built specimen with a wooden lintel above the opening. In both newly tested specimens, the masonry above the opening was supported by a shallow masonry arch. In one of those specimens, a reinforced concrete (RC) bond beam was realized on top of the spandrel, resulting in a composite URM‐RC spandrel. Then, the influence of spandrel type is analyzed in terms of observed damage, force–drift curves, and their bilinear idealizations, which allowed to compare displacement ductility and overstrength of wall specimens. Furthermore, effects of rocking behavior of piers are identified, highlighting their relationship with hysteretic damping and residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Experimental evidence supporting the fact that results from quasi‐static (QS) test of low‐rise reinforced concrete walls may be safely assumed as a lower limit of strength and displacement, and energy dissipation capacities are still scarce. The aim of this paper is to compare the seismic performance of 12 reinforced concrete walls for low‐rise housing: six prototype walls tested under QS‐cyclic loading and six models tested under shaking table excitations. Variables studied were wall geometry, type of concrete, web steel ratio, type of web reinforcement and testing method. Comparison of results from dynamic and QS‐cyclic tests indicated that stiffness and strength properties were dependent on the loading rate, the strength mechanisms associated with the failure mode, the low‐cycle fatigue, and the cumulative parameters, such as displacement demand and energy dissipated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This article presents a new mechanical model for the non‐linear force–displacement response of unreinforced masonry (URM) walls developing a flexural rocking mode including their displacement capacity. The model is based on the plane‐section hypothesis and a constitutive law for the masonry with zero tensile strength and linear elastic behaviour in compression. It is assumed that only the compressed part of the wall contributes to the stiffness of the wall and therefore the model accounts for a softening of the response due the reduction of the effective area. Stress conditions for limit states are proposed that characterise the flexural failure. The new model allows therefore linking local performance levels to global displacement capacities. The limit states criteria describe the behaviour of modern URM walls with cement mortar of normal thickness and clay bricks. The model is validated through comparison of local and global engineering demand parameters with experimental results. It provides good prediction of the effective stiffness, the force capacity and the displacement capacity of URM walls at different limit states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Code design of unreinforced masonry (URM) buildings is based on elastic analysis, which requires as input parameter the effective stiffness of URM walls. Eurocode estimates the effective stiffness as 50% of the gross sectional elastic stiffness, but comparisons with experimental results have shown that this may not yield accurate predictions. In this paper, 79 shear‐compression tests of modern URM walls of different masonry typologies from the literature are investigated. It shows that both the initial and the effective stiffness increase with increasing axial load ratio and that the effective‐to‐initial stiffness ratios are approximately 75% rather than the stipulated 50%. An empirical relationship that estimates the E‐modulus as a function of the axial load and the masonry compressive strength is proposed, yielding better estimates of the elastic modulus than the provision in Eurocode 6, which calculates the E‐modulus as a multiple of the compressive strength. For computing the ratio of the effective to initial stiffness, a mechanics‐based formulation is built on a recently developed analytical model for the force‐displacement response of URM walls. The model attributes the loss in stiffness to diagonal cracking and brick crushing, both of which are taken into account using mechanical considerations. The obtained results of the effective‐to‐initial stiffness ratio agree well with the test data. A sensitivity analysis using the validated model shows that the ratio of effective‐to‐initial stiffness is for most axial load ratios and wall geometries around 75%. Therefore, a modification of the fixed ratio of effective‐to‐initial stiffness from 50% to 75% is suggested.  相似文献   

16.
This paper deals with the results of cyclic load tests on masonry walls performed for the purpose of evaluation of in-plane shear behaviour and identification of shear strength, stiffness and energy dissipation. Eight walls in two series were assembled in laboratory conditions. The first series consisted of four unreinforced masonry walls constructed from solid clay bricks and lime mortar. The walls from the second series were strengthened by application of RC jackets on both sides. These were constructed of the same material and were characterized by the same geometry properties and vertical load levels as those of the walls from the first series. The main goal of the tests was to compare the behaviour of the unreinforced and strengthened walls under cyclic horizontal load. The results from the tests showed that the application of the strengthening method contributed to a significant improvement of the shear resistance of the jacketed walls. Analytical models were used to predict the shear resistance of the walls. Good agreement with the experimental results was obtained with a model based on tensile strength of masonry.  相似文献   

17.
A computational model for evaluating the dynamical response and the damage of large masonry walls subjected to out‐of‐plane seismic actions is presented. During earthquakes, these actions are often the main cause of damage for the front wall and lateral walls of old masonry‐built churches and monuments. Since the crack patterns often tend to subdivide the plane walls into a number of blocks, the model assumes such walls as a series of quadrilateral plane rigid elements connected to each other in the middle of their adjoining sides. Only the out‐of‐plane displacements are considered, and the connections are regarded as spherical elasto‐plastic joints which allow rotations whose axis is in the plane of the undeformed wall. The hysteretic characteristics of these joints are defined so as to approximate the brittle behaviour of masonry material and the degradation due to cyclic loadings. The numerical results obtained using a limited number of elements show that the global out‐of‐plane response of the masonry walls and the mechanical degradation at each connection are in accord with the observed behaviour of real churches hit by strong earthquakes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Recent seismic events have provided evidence that damage to masonry infills can lead not only to large economic losses but also to significant injuries and even fatalities. The estimation of damage of such elements and the corresponding consequences within the performance‐based earthquake engineering framework requires the construction of reliable fragility functions. In this paper, drift‐based fragility functions are developed for in‐plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry infills with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading. Three damage states associated with the structural performance and reparability of masonry infill walls are defined. The effect of mortar compression strength, masonry prism compression strength, and presence of openings is evaluated and incorporated for damage states where their influence is found to be statistically significant. Uncertainty due to specimen‐to‐specimen variability and sample size is quantified and included in the proposed fragility functions. It is concluded that prism strength and mortar strength are better indicators of the fragility of masonry infills than the type of bricks/blocks used, whose influence, in general, is not statistically significant for all damage states. Finally, the presence of openings is also shown to have statistically relevant impact on the level of interstory drift ratio triggering the lower damage states.  相似文献   

19.
20.
In modern unreinforced masonry buildings with stiff RC slabs, walls of the top floor are most susceptible to out‐of‐plane failure. The out‐of‐plane response depends not only on the acceleration demand and wall geometry but also on the static and kinematic boundary conditions of the walls. This paper discusses the influence of these boundary conditions on the out‐of‐plane response through evaluation of shake table test results and numerical modelling. As a novum, it shows that the in‐plane response of flanking elements, which are orthogonal to the wall whose out‐of‐plane response is studied, has a significant influence on the vertical restraint at the top of the walls. The most critical configuration exists if the flanking elements are unreinforced masonry walls that rock. In this case, the floor slabs can uplift, and the out‐of‐plane load‐bearing walls loose the vertical restraint at the top. Numerical modelling confirms this experimentally observed behaviour and shows that slab uplift and the difference in base and top excitation have a strong influence on the out‐of‐plane response of the walls analysed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号