首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The driving actions are varied during the rain-fall-runoff process in a catchment. The impacts on therunoff process, caused by human activities or climatechange, can be attributed to two aspects: the charac-teristics of rainfall process and ground pad changes.To clarify their impacts on hydrological cycle is thefoundation of mechanism research of scientific hy-drology. So far, all of the research results, domestic andabroad, indicate that the advances on the understand-ing of hydrologica…  相似文献   

2.
This paper evaluates the performance and winter hydrology of two small‐scale rain gardens in a cold climate coastal area in Trondheim, Norway. One rain garden received runoff from a small residential watershed over a 20 month study period while the second rain garden with a shorter study period of 7 months was used as a control. The objective of the study was to investigate the extent to which cold climatic conditions would influence the hydrology and performance of the rain gardens. The hydraulic detention, storm lag time and peak flow reduction were measured and compared seasonally. No significant difference between seasonal lag time could be found, but there was a clear decreasing trend in lag time between rain, rain‐on‐snow and snowmelt. The average peak flow reduction for 44 storms in the study period was 42% compared to 27% for the winter seasons, indicating that the performance of the rain garden is reduced in the cold season (below 0 °C). The average hydraulic detention time for the rain garden was 0·84 ( ± 0·73) with runoff inflow and 1·91 ( ± 3·1) with only precipitation. A strong positive correlation was found between the time since the last wetting event and lag time, and between air temperature and hydraulic detention. This indicates that the time between events and seasonal air temperatures are key parameters in the hydraulic performance of cold climate rain gardens. The rain gardens were not used for snow storage areas, and a volume requirement for this was not evaluated in the study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The Hortonian model of runoff flow which had been thought to be applicable in arid areas has previously been shown not to be valid, notably in Israel, where inverse relations have been observed between slope angle, and runoff discharge and slope erosion. The paper discusses laboratory experiments on simulated slope conditions in a rather arid environment. It is shown by rain simulation on granite grus that infiltration capacity is a function of rainfall intensity, slope angle and runoff discharge. The infiltration capacity f can equal the rainfall intensity beyond a critical distance x(m) so that discharge becomes constant. Debris covers affect runoff hydraulics, especially on poorly cohesive soils, and both slow downslope and upslope movements which correspond to the process of so-called runoff creep can occur. Coarse debris and grass covers, as roughness factors, induce hydraulic discontinuities and activate local turbulent flow and slope erosion. Instead of being merely protective elements these factors tend to catalyze the slope wash, in comparison with naked surfaces, if the Reynolds number of the flow exceeds a certain critical value.  相似文献   

4.
Zekai Şen 《水文研究》2007,21(8):1006-1014
Arid and semi‐arid regions expose special hydrological features that are distinctive from humid areas. Unfortunately, humid‐region hydrological empirical formulations are used directly in the arid and semi‐arid regions without care about the basic assumptions. During any storm rainfall in arid regions, rainfall, infiltration and runoff components of the hydrological cycle have impacts on water resources. The basis of the methodology presented in this paper is the ratio of runoff increment to rainfall increment during an infinitesimally small time duration. This is the definition of runoff coefficient for the same infinitesimal time duration. The ratio is obtained through rational, physical and mathematical combination of hydrological thinking and then integrated with the classical infiltration equation for the hydrograph determination. The parameters of the methodology are explained and their empirical estimations are presented. The methodology works for rainfall and runoff from ungauged watersheds where infiltration measurement can be performed. The comparison of the new approach with different classical approaches, such as the rational formula and Soil Conservation Service method, are presented in detail. Its application is performed for two wadis within the Kingdom of Saudi Arabia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Arie Ben-Zvi 《水文科学杂志》2020,65(10):1794-1801
ABSTRACT

Certain rainfall–runoff models, e.g. the unit hydrograph, assume linear relationships between the variables. These are proportionality of runoff discharges to (net) rainfall depth and linear summations of discharges resulting from (net) rainfalls during different time intervals or over different sectors of a watershed. This study examines the validity of these assumptions by use of an extensive two-dimensional laboratory experimentation. The results indicate that proportionality would be found under high rainfall intensity through a long duration. Spatial summations would more likely yield correct discharges in cases where rainfall duration is equal to, or is longer than, the time of concentration. Temporal summations may yield correct discharges when rainfall duration is longer than one half of the time of concentration. Here, the time of concentration is determined at the beginning of gradual approach of the discharge towards the equilibrium state.  相似文献   

6.
Most runoff analyses using a grid‐based distributed model use one parameter group calibrated at the outlet of a watershed, instead of dividing the watershed into subwatersheds. Significant differences between the observed value and the simulation result of the subwatersheds can occur if just one parameter group is used in all subwatersheds that have different hydrological characteristics from each other. Therefore, to improve the simulation results of the subwatersheds within a watershed, a model calibrated at every subwatershed needs to be used to reflect the characteristics of each subwatershed. In this study, different parameter groups were set up for one or two sites using a distributed model, the GRM (Grid based Rainfall‐runoff Model), and the evaluations were based on the results of rainfall–runoff analysis, which uses a multi‐site calibration (MSC) technique to calibrate the model at the outlet of each site. The Hyangseok watershed in Naeseong River, which is a tributary of Nakdong River in Korea, was chosen as the study area. The watershed was divided into five subwatersheds each with a subwatershed outlet that was applied to the calibration sites . The MSC was applied for five cases. When a site was added for calibration in a watershed, the runoff simulation showed better results than the calibration of only one site at the most downstream area of the watershed. The MSC approach could improve the simulation results on the calibrated sites and even on the non‐calibrated sites, and the effect of MSC was improved when the calibrated site was closer to the runoff site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Documenting hillslope response to hydroclimatic forcing is crucial to our understanding of landscape evolution. The evolution of talus-pediment sequences (talus flatirons) in arid areas was often linked to climatic cycles, although the physical processes that may account for such a link remain obscure. Our approach is to integrate field measurements, remote sensing of rainfall and modeling to link between storm frequency, runoff, erosion and sediment transport. We present a quantitative hydrometeorological analysis of rainstorms, their geomorphic impact and their potential role in the evolution of hyperarid talus-pediment slopes in the Negev desert, Israel. Rainstorm properties were defined based on intensity–duration–frequency curves and using a rainfall simulator, artificial rainstorms were executed in the field. Then, the obtained measured experimental results were up-scaled to the entire slope length using a fully distributed hydrological model. In addition, natural storms and their hydro-geomorphic impacts were monitored using X-band radar and time-lapse cameras. These integrated analyses constrain the rainfall threshold for local runoff generation at rain intensity of 14 to 22 mm h-1 for a duration of five minutes and provide a high-resolution characterization of small-scale runoff-generating rain cells. The current frequency of such runoff-producing rainstorms is ~1–3 per year. However, extending this local value into the full extent of hillslope runoff indicates that it occurs only under rainstorms with ≥ 100-years return interval, or 1% annual exceedance probability. Sheetwash efficiency rises with downslope distance; beyond a threshold distance of ~100 m, runoff during rainstorms with such annual exceedance probability are capable of transporting surface clasts. The erosion efficiency of these discrete rare events highlights their potential importance in shaping the landscape of arid regions. Our results support the hypothesis that a shift in the properties and frequency of extreme events can trigger significant geomorphic transitions in areas that remained hyperarid during the entire Quaternary. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Understanding the intensity and duration of tropical rain events is critical to modelling the rate and timing of wet‐canopy evaporation, the suppression of transpiration, the generation of infiltration‐excess overland flow and hence to erosion, and to river responsiveness. Despite this central role, few studies have addressed the characteristics of equatorial rainstorms. This study analyses rainfall data for a 5 km2 region largely comprising of the 4 km2 Sapat Kalisun Experimental Catchment in the interior of northeastern Borneo at sampling frequencies from 1 min?1 to 1 day?1. The work clearly shows that most rainfall within this inland, forested area is received during regular short‐duration events (<15 min) that have a relatively low intensity (i.e. less than two 0·2 mm rain‐gauge tips in almost all 5 min periods). The rainfall appears localized, with significant losses in intergauge correlations being observable in minutes in the case of the typical mid‐afternoon, convective events. This suggests that a dense rain‐gauge network, sampled at a high temporal frequency, is required for accurate distributed rainfall‐runoff modelling of such small catchments. Observed rain‐event intensity is much less than the measured infiltration capacities, and thus supports the tenet of the dominance of quick subsurface responses in controlling river behaviour in this small equatorial catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Using the Monte Carlo (MC) method, this paper derives arithmetic and geometric means and associated variances of the net capillary drive parameter, G, that appears in the Parlange infiltration model, as a function of soil texture and antecedent soil moisture content. Approximate expressions for the arithmetic and geometric statistics of G are also obtained, which compare favourably with MC generated ones. This paper also applies the MC method to evaluate parameter sensitivity and predictive uncertainty of the distributed runoff and erosion model KINEROS2 in a small experimental watershed. The MC simulations of flow and sediment related variables show that those parameters which impart the greatest uncertainty to KINEROS2 model outputs are not necessarily the most sensitive ones. Soil hydraulic conductivity and wetting front net capillary drive, followed by initial effective relative saturation, dominated uncertainties of flow and sediment discharge model outputs at the watershed outlet. Model predictive uncertainty measured by the coefficient of variation decreased with rainfall intensity, thus implying improved model reliability for larger rainfall events. The antecedent relative saturation was the most sensitive parameter in all but the peak arrival times, followed by the overland plane roughness coefficient. Among the sediment related parameters, the median particle size and hydraulic erosion parameters dominated sediment model output uncertainty and sensitivity. Effect of rain splash erosion coefficient was negligible. Comparison of medians from MC simulations and simulations by direct substitution of average parameters with observed flow rates and sediment discharges indicates that KINEROS2 can be applied to ungauged watersheds and still produce runoff and sediment yield predictions within order of magnitude of accuracy.  相似文献   

12.
David Dunkerley 《水文研究》2008,22(26):5024-5036
Rainfall is routinely reported as falling in ‘events’ or ‘storms’ whose beginning and end are defined by rainless intervals of a nominated duration (minimum inter‐event time, MIT). Rain events commonly exhibit fluctuations in rain rate as well as periods when rain ceases altogether. Event characteristics such as depth, mean rain rate, and the surface runoff volume generated, are defined in relation to the length of the rain event. These derived properties are dependent upon the value of MIT adopted to define the event, and the literature reveals a wide range of MIT criteria. Surprisingly little attention has been paid to this dependency, which limits the inter‐comparison of results in published work. The diversity in criteria also diminishes the usefulness of historical data on event durations, rain rates, etc., in attempts to document changes in the rainfall climate. This paper reviews the range of approaches used in the recognition of rain events, and a 5 year pluviograph record from an arid location is analysed. Changing MIT from 15 min to 24 h (lying within the range of published criteria) alters the number of rain events from 550 to 118. The mean rain rate declines from 2·04 mm h?1 to 0·94 mm h?1, and the geometric mean event duration rises from 0·66 h to 3·98 h. This wide variation in the properties of rain events indicates that more attention needs to be paid to the selection and reporting of event criteria in studies that adopt event‐based data analysis. The selection of a MIT criterion is shown to involve a compromise between the independence of widely‐spaced events and their increasingly variable intra‐event characteristics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this paper is to quantify, and enable the prediction of, sediment delivery and water pollution impacts from a spectrum of forest roads. Ten 100–200 m long sections of forest road were selected to incorporate a wide range of the key physical site factors that are likely to affect the rate of sediment generation. Each road section was permanently instrumented for 1 year to measure rainfall and runoff continuously. Suspended load, bedload, and traffic were integrated measurements over 2‐ to 3‐week site‐service intervals. Total annual sediment load (normalized for slope) varied about 25‐fold, from 216 mg m?2 per millimetre of rain for a high‐quality gravel surfaced road with minimal traffic to 5373 mg m?2 per millimetre of rain for an unsurfaced road on an erodible subsoil with moderate light‐vehicle traffic. For the seven gravel‐surfaced roads in this study, truck traffic (axles/week) explained 97% of the variation in annual sediment delivery (per unit of rainfall) from the road. Equations are proposed that allow annual sediment delivery rates to be estimated when net rainfall, road slope, road area, and truck traffic are known. Roads produce runoff rapidly and were found to deliver sediment for about the same duration as rainfall is falling, in this study varying between 5 and 10% of the time. The patterns of sediment delivery measured from the experimental roads (frequency, duration, and intensity) in this study are similar to levels that have been shown to alter the composition of in‐stream macroinvertebrate communities in small (e.g. <10 l s?1), clean, mountain streams. However, in larger well‐mixed streams (e.g. >500 l s?1), dilution is sufficient to prevent concentrations reaching critical levels that are likely to result in biological impacts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
David Dunkerley 《水文研究》2015,29(15):3294-3305
The metric or ‘observable’ properties of intra‐event rainfall intermittency (IERI) are quantified using a 10‐year record from arid Fowlers Gap, Australia. Rainfall events were delineated using the minimum inter‐event time (MIT) criterion, using eight values in the range of 1 h – 24 h. Within events, no‐rain periods were defined as corresponding to rainfall rates R < 0.1 mm/h or R < 0.2 mm/h (both less than typical wet‐canopy evaporation rates during rainfall). In this way, rainfall events were subdivided into rain and no‐rain periods. Intermittency was characterised using two measures: the fraction of rainless time within an event, and the duration of the longest rainless period. Events identified using a minimum inter‐event time (MIT) of 24 h included on average 9.4 h of contiguous no‐rain time (47.5% of the mean event duration), and only 6.8 h of contiguous rain. Total IERI averaged 51.1% for these events. Events defined with MIT = 6 h (a value commonly adopted in the literature) exhibited a mean of 1.53 h of no‐rain and 9.04 h of contiguous rain. Total IERI averaged 13.9% for these events for R < 0.1 mm/h, but reached 39.2% if no‐rain periods were taken as those of <0.2 mm/h. The maximum contiguous no‐rain period for events defined using MIT = 6 h was 10.9 h from an event of 12.6 h duration, and this represents 86.5% of the event duration. Results demonstrate that smaller, shorter, and less intense rainfall events tend to exhibit higher IERI than larger, longer, and more intense events. IERI is relevant to the understanding of land surface processes. Information on the metric properties of IERI in different rainfall types (convective and stratiform) and rainfall climates (arid, maritime, and wet tropical) may prove to have significance for diverse studies in land surface hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

River basin lag time (LAG), defined as the elapsed time between the occurrence of the centroids of the effective rainfall intensity pattern and the storm runoff hydrograph, is an important factor in determining the time to peak and the peak value of the instantaneous unit hydrograph, IUH. In the procedure of predicting a sedimentgraph (suspended sediment load as a function of time), the equivalent parameter is the lag time for the sedimentgraph (LAGs ), which is defined as the elapsed time between the occurrence of the centroids of sediment production during a storm event and the observed sedimentgraph at the gauging station. Results of analyses of rainfall, runoff and suspended sediment concentration event data collected from five small Carpathian basins in Poland and from a 2.31-ha agricultural basin, in central Illinois, USA have shown that LAGs was, in the majority of cases, smaller than LAG, and that a significant linear relationship exists between LAGs and LAG.  相似文献   

18.
Hill reservoirs are rain water‐harvesting structures that have been increasingly adopted in arid and semi‐arid regions, such as North Africa, to capture and conserve runoff water and for use as alternative water resources in agricultural development. Currently, process‐based information on reservoir hydrology is needed to improve reservoir management practices. The study aims to develop an approach to estimate the reservoir–subsurface exchange flux and its associated error at the annual, monthly, and intra‐monthly time scales to better understand the hydrological functioning and dynamics of hill reservoirs. This approach is based on a hydrological water balance of the hill reservoir by considering all water input and output fluxes and their associated errors. The results demonstrate the ability and relevance of the approach in estimating the net reservoir–subsurface exchange flux and its error estimations at various time scales. Its application on the Kamech catchment (Northern Tunisia) for the 2009–2012 period demonstrates that the net reservoir–subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer dominates over the discharge from the aquifer to the reservoir. Moreover, reservoir–subsurface exchange constitutes the main output component in the water balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Bioretention flow-through planters manage stormwater with smaller space requirements or structural constraints associated with other forms of green infrastructure. This project monitored the hydrology of four bioretention planters at Stevens Institute of Technology to evaluate the system's ability to delay runoff and fully capture small rain events. The water depth in the outflow and the volumetric water content near the inflow were measured continuously over 15 months. Rainfall characteristics were documented from an on-site rain gauge. This monitoring determined the time from the start of a rain event to the onset of outflow from each planter, which was defined as the lag. The initial moisture deficit (difference between pre-event volumetric water content and maximum measured volumetric water content), approximate runoff volume, and approximate runoff volume in the first half hour were analysed to determine their effect on runoff capture and lag. During the monitoring period, 38% of observations did not produce measurable outflow. Logistic regression determined that the initial moisture deficit and approximate runoff volume were statistically significant in contributing to a fully captured storm. Despite the large hydraulic loading rate and concrete bottom, the planters demonstrate effective discharge lag, ranging from 5 to 1,841 min with a median of 77.5 min. Volumetric water content of the media and inlet runoff volume in the first half hour were significant in modelling the lag duration. These results represent a combination of controllable and uncontrollable aspects of green infrastructure: media design and rainfall.  相似文献   

20.
David Dunkerley 《水文研究》2012,26(15):2211-2224
Small plots and a dripper rainfall simulator were used to explore the significance of the intensity fluctuations (‘event profile’) within simulated rainfall events on infiltration and runoff from bare, crusted dryland soils. Rainfall was applied at mean rain rates of 10 mm/h. Fourteen simulated rainfall events each involved more than 5000 changes of intensity and included multipeak events with a 25‐mm/h peak of intensity early in the event or late in the event and an event that included a temporary cessation of rain. These are all event profiles commonly seen in natural rain but rarely addressed in rainfall simulation. A rectangular event profile of constant intensity, as commonly used in rainfall simulation experiments, was also adopted for comparative purposes. Results demonstrate that event profile exerts an important effect on infiltration and runoff for these soils and rainfall event profiles. ‘Uniform’ events of unvarying intensity yielded the lowest total runoff, the lowest peak runoff rate and the lowest runoff ratio (0.13). These parameters increased for ‘early peak’ profiles (runoff ratio 0.24) and reached maxima for ‘late peak’ profiles (runoff ratio 0.50). Differences in runoff ratio and peak runoff rate between the ‘uniform’ event profile and those of varying intensity were all statistically significant at p ≤ 0.01. Compared with ‘uniform’ runs, the varying intensity runs yielded larger runoff ratios and peak runoff rates, exceeding those of the ‘uniform’ events by 85%–570%. These results suggest that for small‐plot studies of infiltration and erosion, the continued use of constant rainfall intensity simulations may be sacrificing important information and misrepresenting the mechanisms involved in runoff generation. The implications of these findings for the ecohydrology of the research site, an area of contour‐aligned banded vegetation in which runoff and runon are of critical importance, are highlighted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号