首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了揭示陕北黄土高原红枣种植区水热资源变化特征,给当地红枣产业适应气候变化提供科学依据,利用陕北黄土高原红枣种植区8个气象站1971-2019年的气温、降水资料,及中等(RCP4.5)和高等(RCP8.5)排放气候情景下2021-2050年的气候变化预估数据,采用线性倾向估计、M-K检验、Morlet小波分析方法对气温、降水变化特征进行分析。结果显示:近49 a,红枣种植区年和生长季平均气温呈显著上升趋势,分别在1991年和1993年发生突变,存在44 a的周期变化。年和生长季降水量呈不显著增加趋势,存在31 a左右的周期变化,未发生突变。2021-2050年,RCP4.5、RCP8.5两种情景模式下,年和生长季平均气温呈上升趋势,RCP8.5排放情景下升温更显著,年平均气温在2027年发生了突变。两种排放情景下,年和生长季平均气温存在31 a左右的周期变化。年和生长季降水量在RCP4.5排放情景下呈不显著减少趋势,在RCP8.5排放情景下呈不显著增加趋势;降水量没有发生突变现象。RCP4.5情景下,年和生长季降水存在23~31 a周期变化;RCP8.5情景下存在7 a的变化周期。陕北红枣种植区应积极适应气候变化,调整种植布局,选择适宜的红枣品种,促进陕北红枣产业可持续健康发展。  相似文献   

2.
基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估   总被引:5,自引:1,他引:4  
范科科  张强  史培军  孙鹏  余慧倩 《地理学报》2018,73(9):1778-1791
土壤水是地表与大气在水热交换方面的关键纽带,是关键水循环要素,更是地表产汇流过程的关键控制因子。青藏高原是地球第三极,也是亚洲水塔,探讨青藏高原土壤水变化对于探讨青藏高原热力学特征变化及其对东亚乃至全球气候变化的影响具有重要意义,而获取高精度长序列大尺度土壤水数据集则是其关键。本文利用青藏高原100个土壤水站点观测数据,从多空间尺度(0.25°×0.25°,0.5°×0.5°,1°×1°)、多时间段(冻结和融化期)等角度,采用多评价指标(R、RMSE、Bias),对多套遥感反演和同化数据(ECV、ERA-Interim、MERRA、Noah)进行全面评估。结果表明:① 除ERA外,其他数据均能反映青藏高原土壤水变化,且与降水量变化一致。而在那曲地区,遥感反演和同化数据均明显低估实测土壤水含量。从空间分布来看,MERRA和Noah与植被指数最为一致,可很好地反映土壤水空间变化特征;② 青藏高原大部分地区土壤水变化主要受降水影响,其中青藏高原西部边缘与喜马拉雅地区土壤水变化则受冰雪融水和降水的共同影响;③ 除阿里地区外,大部分遥感反演和同化数据在融化期与实测土壤水相关性高于冻结期,其中在那曲地区,遥感反演和同化数据均高估冻结期土壤含水量,却低估融化期土壤含水量。另外,遥感反演和同化数据对中大空间尺度土壤水的估计要好于对小空间尺度土壤水的估计。本研究为青藏高原土壤水研究的数据集选择提供重要理论依据。  相似文献   

3.
CMIP5全球气候模式对华北平原气候的模拟和预估   总被引:1,自引:0,他引:1  
以气候变暖为主要特征的全球气候变化对自然环境和农业生产有重要影响,准确预估未来不同气候情景下的气候变化能为应对其带来的负面影响提供必要的数据基础和科学依据。该文通过统计降尺度方法对CMIP5中33个全球气候模式(GCM)的未来气候情景数据进行时空降尺度处理,得到逐日站点数据,并基于多模式集合预估华北平原在两个典型气候情景(RCP4.5和RCP8.5)下未来气候变化的时空特征。结果表明:在时间变化上,2040年后温度在情景RCP8.5下的增幅远高于情景RCP4.5,至21世纪末增幅达到最高;太阳总辐射量变化趋势呈现明显的"减少—增加—稳定"特征;未来降雨量呈微弱上升趋势。在空间变化上,东部和西南部地区未来最高温度增幅最高,最低温度增幅呈现自西南向东北递增的空间格局;太阳辐射增幅表现为明显的"北低南高",而降雨增幅自西北向东南递减。2040s(2031-2060)阶段各主要气候因子(温度、太阳辐射和降雨)增幅较小,而2080s(2071-2100)阶段增幅加大;不同气候情景下各气候因子增幅差异较大,温度和降雨在情景RCP8.5下的增幅明显高于RCP4.5,而太阳辐射在情景RCP4.5下的增幅高于RCP8.5。  相似文献   

4.
利用1971—2010年中国气温数据和区域协同降尺度试验东亚地区项目组RCP 4. 5和RCP 8. 5情景下未来气候预估数据,分析了5℃为界限温度表征的气候生长期演变规律。结果表明:(1) 1971—2010年,全国大部分地区气候生长期略有增加,生长期开始日期提前为主要特征;(2)在RCP 4. 5情景下,气候生长期开始日期的提前主要表现在华东和华中地区以及青藏高原地区,结束日期的推迟表现在青藏高原地区中部、南部和东部以及新疆的“三山地区”,推迟日数均在30 d以上;(3)在RCP 8. 5情景下,气候生长期开始日期受影响范围在RCP 4. 5情景的基础上有所增加,变化日数大幅增加,结束日期则是长江流域以北及青藏高原地区变化日数均较大,长江流域以北和青藏高原地区的气候生长期  相似文献   

5.
范泽孟  黄言  岳天祥 《地理学报》2018,73(1):164-176
如何充分利用离散的观测数据,通过对维管植物物种分布丰富度及其与生境因子之间的相互作用和影响机理的定量分析,实现维管植物物种丰富度的空间分布及其情景模拟,是目前生物多样性研究前沿和核心内容之一。针对这一问题,在实现青藏高原37个国家自然保护区的维管植物物种数量收集和边界数据矢量化的基础上,分别进行维管植物物种数量与土地覆盖类型、环境因子和景观生态指数等三大类生境因子之间的相关关系的定量计算和对比分析,筛选和确定最佳相关分析方程,进而构建青藏高原维管植物物种丰富度的空间模拟分析模型。该模型中,维管植物物种丰富度与生境因子之间的复相关系数为0.94,模型验证结果表明,青藏高原的维管植物物种的平均丰富度为496.79种/100 km2,其空间分布格局整体上呈东南向西北逐渐减少趋势;另外,除柴达木盆地荒漠区域以外,维管植物物种的空间分布随海拔的升高而减少。基于CMIP5 RCP 2.6、RCP 4.5和RCP 8.5三种气候情景模拟获得的青藏高原维管植物物种丰富度未来情景结果显示,在T0-T4(2010-2100)时段内,青藏高原维管植物物种丰富度整体将呈减少趋势。RCP 8.5情景下青藏高原维管植物物种丰富度的变化幅度最大,而RCP 2.6情景下的维管植物物种丰富度的变化幅度最小。研究表明,本文构建的模型能够对青藏高原维管植物物种丰富度的空间分布格局及其未来情景进行模拟分析,模拟结果可为青藏高原生物多样性及其对气候变化响应的综合评估和情景模拟提供方法和技术支持。  相似文献   

6.
非平稳标准化降水蒸散指数构建及中国未来干旱时空格局   总被引:3,自引:0,他引:3  
温庆志  孙鹏  张强  姚蕊 《地理学报》2020,75(7):1465-1482
旱灾是一种致灾因子与成害机理均非常复杂的自然灾害,也是目前对其检测与风险防御最为困难的自然灾害种类之一。随着全球气候变化,干旱的变化逐渐趋于非平稳化,水文气象序列的非平稳性已有广泛研究,但在干旱检测指标中却鲜有考虑。基于标准化降水蒸散指数(SPEI)和非平稳性理论,构建非平稳性标准化降水蒸散指数(NSPEI)并进行适用性评价,利用NSPEI评估未来不同排放情景下中国气象干旱时空格局演变规律。结果表明:① 非平稳性站点集中在东北平原、黄淮海平原、长三角地区、青藏高原及周边区域,NSPEI拟合最优的站点占中国气象站点的88%(2177个站点)。② SPEI对温度较为敏感,在评估未来干旱变化时会高估干旱强度和持续时间性,而NSPEI能够克服这一弱点,较SPEI可更好的检测中国气象干旱,且能很好的刻画中国未来干旱变化。③ 低、高排放情景下中国北方干旱加剧,南方呈湿润化趋势;中排放情景下中国北方湿润化趋势明显,而中国南方则呈干旱化。基于NSPEI干旱检测结果,中高排放情景下中国未来极端干湿历时与发生频率均呈增加趋势。  相似文献   

7.
基于跨部门影响模型比较计划(ISI-MIP)中20种气候模式与作物模型组合的模拟结果,预估了RCP 8.5排放情景下21世纪印度小麦和水稻单产变化。研究发现:① 多模式集合模拟结果基本再现了印度小麦和水稻单产的空间差异;同时,再现了小麦和水稻单产对温度和降水变化的响应特征:与温度呈负相关,与降水呈正相关。② RCP 8.5情景下,水稻和小麦生长季温度和降水均呈增加趋势,小麦生长季的温度、降水增加幅度大于水稻。空间上,温度增加幅度自北向南逐渐减小,降水增幅则逐渐增加,并且小麦种植区升温幅度大于非种植区,降水增幅则少于非种植区,水稻种植区升温幅度小于非种植区,降水增幅则多于非种植区。③ RCP 8.5情景下,小麦和水稻单产均呈下降趋势,21世纪后半叶尤为明显。小麦单产的下降速度明显大于水稻,其中21世纪前半叶小麦和水稻单产下降速度约分别为1.3%/10a (P < 0.001)和0.7%/10a (P < 0.05),后半叶分别增至4.9%/10a (P < 0.001)和4.4%/10a (P < 0.001)。小麦和水稻单产变化存在明显的空间异质性,小麦单产的最大下降幅度出现在德干高原西南部,降幅约60%,水稻单产最大下降幅度出现在印度河平原北部,降幅约50%。这意味着未来气候变化情景下印度粮食供给将面临较大的挑战。  相似文献   

8.
RCPs情景下未来青海高原气候变化趋势预估   总被引:2,自引:1,他引:1  
刘彩红  余锦华  李红梅 《中国沙漠》2015,35(5):1353-1361
利用 CMIP5(Coupled Model Intercomparison Project Phase 5)耦合模式结果对 RCPs(Representative Concentration Pathways)情景下的青海高原气温、降水变化趋势及极端气候事件2011-2100年演变特征进行了预估。结果表明:在21世纪,青海高原年平均气温显著升高,RCP2.6、RCP4.5 和 RCP8.5排放情景下增温速率分别为0.06 ℃/10a、0.24 ℃/10a和0.61 ℃/10a。年降水量将明显增加,幅度1.4~7.0 mm/10a。青海高原21世纪与气温、降水有关的事件都有趋于极端化的趋势,极端冷指标下降,极端暖指标均明显上升。极端降水频次增加,强度加重,且变化幅度与排放强度成正比。  相似文献   

9.
RCP4.5情景下淮河流域气候变化的高分辨率模拟   总被引:2,自引:0,他引:2  
高超  张正涛  陈实  刘青 《地理研究》2014,33(3):467-477
利用CCLM高分辨率区域气候模式RCP4.5情景预估数据与淮河流域1960-2005年日尺度气象观测资料,对比分析模式在试验期(1960-2005年)和预估期(2006-2040年)的模拟能力。结果表明:①试验期模式数据能较准确地模拟流域逐月平均温度时间变化特征,相关系数达0.99(通过95%置信度检验);日均温空间分布特征相关系数达0.72;但在南部高海拔地区(安徽省霍山县和金寨县)精度不高;极端最高(低)气温的空间相关性达0.77(0.88)。②模式在试验期模拟的逐月平均降水量总体趋势与实测值变化一致,相关系数达0.63(通过95%置信度检验);对干旱的模拟与观测数据存在一定误差,但整体趋势与其一致;年均降水量和极端强降水空间分布相关系数分别达0.90和0.93,模拟效果较好;整体上,模式对温度的模拟效果要好于降水模拟。③RCP4.5情景下,空间尺度上淮河流域未来温度和降水与观测期相比变幅小,时间尺度上年均降水量无显著变化,平均气温年际变化率约0.21℃/10a,极端高温持续增长,低温持续下降。  相似文献   

10.
塔里木河流域极端气候事件模拟与RCP4.5情景下的预估研究   总被引:1,自引:1,他引:0  
利用塔里木河流域1986-2005年气温、降水逐日格点数据和MPI-ESM-LR模式驱动的CCLM区域模式模拟数据,评估了CCLM模式对塔里木河流域极端气候事件的模拟能力。同时采用EDCDF法对最高气温、最低气温和降水预估数据进行偏差校正,并计算了2016-2035年极端气候指数。结果表明:该区域气候模式对塔里木河流域年平均最高气温、最低气温和降水的空间分布具有较强的模拟能力,特别是气温空间相关系数在0.97以上;该模式对于极端气候事件也有着较强的模拟能力,大部分极端气候指数的空间相关系数达到了0.01的显著性水平。通过偏差校正,有效地提高了气候要素及相应的极端气候指数的模拟精度。预估未来RCP4.5情景下,塔里木河流域未来(2016-2035年)极端暖事件(暖期持续指数、气温日较差、暖昼、极端最高气温)有增加的趋势,未来流域中部的干旱可能更严重,而流域内环塔里木盆地区域将变湿。  相似文献   

11.
基于MODIS数据的青藏高原旱情监测研究   总被引:5,自引:0,他引:5  
杨秀海  卓嘎  罗布 《中国沙漠》2014,34(2):527-534
本文利用温度植被旱情指数(TVDI)和植被供水指数(VSWI)分别对2009、2010年3—10月青藏高原土壤湿度状况进行监测分析,同时利用气象台站实测地面降水资料进行了验证。利用MODIS资料提取的归一化植被指数(NDVI)和地表温度(TS),构建NDVI-TS特征空间,依据该特征空间计算出的反映青藏高原土壤湿度的TVDI与同期累积降水相关性显著;VSWI计算过程简单,但所反映的土壤湿度与同期累积降水的相关性较差。因此,对青藏高原这种范围广、下垫面多变复杂区域而言,TVDI能够更好地反映土壤湿度状况,对干旱监测具有一定的科学意义。  相似文献   

12.
青藏高原为全球气候变化最为敏感的区域之一,探讨该地区土壤水分变化对近地面气温的影响将为青藏高原水汽循环研究及该地区对周边气候与环境的影响研究提供重要理论支撑。利用NCEP-CFSR数据集,基于土壤水分对近地面气温的影响机理,揭示了青藏高原不同季节、不同植被分区下土壤水分时空分异规律、土壤水分与蒸发率的响应与耦合状态及土壤水分通过蒸散发过程对近地面气温的影响。结果表明:① 不同季节下青藏高原土壤水分空间分布基本一致,除西北地区和喜马拉雅山脉外,整体呈现由东南向西北递减趋势,青藏高原地区存在干旱区变湿,湿润区变干的空间特征;② 青藏高原大部分区域土壤水分处于干湿过渡状态,其中青藏高原南部和东南部地区全年处于干湿过渡状态,而柴达木盆地几乎全年处于干旱状态;③ 近地面气温对土壤水分的响应在冬季最弱,在夏季最强且空间差异较小,其中在冬、春、夏季为负反馈,另外不同植被覆盖区近地面气温对土壤水分的敏感性差异很大。此项研究对于进一步探讨青藏高原地区陆气耦合状态及变化环境下的区域水汽循环及其效应具有重要理论意义。  相似文献   

13.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5 (low emission scenario) and RCP8.5 (high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that: (1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases. (2) While the historical temperature increase rate is 0.35°C/10a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10a, compared to 0.19°C/10a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

14.
1960 年以来青藏高原气温变化研究进展   总被引:9,自引:0,他引:9  
宋辞  裴韬  周成虎 《地理科学进展》2012,31(11):1503-1509
青藏高原是中国最大、世界海拔最高的高原,它对全球气候系统存在显著影响.本文对青藏高原自1960年以来的气温变化特征及其影响因素的研究进行了概述与总结.近50 年来,青藏高原气温明显上升,经历了一个冷期和一个暖期,气温在20 世纪80 年代发生突变,整体呈现前低后高波动上升的趋势;最低气温和最高气温呈不对称的线性增温趋势,最低气温的上升速率要比最高气温快得多;而极端事件频率、强度也有所变化,其中低温事件大大减少,高温事件则明显增加;各类界限温度的积温以及持续日数等生物温度指标也都显著增加.在空间分布上,青藏高原气温呈现出整体一致增暖,并且有西高东低、南北反相的变化形态.影响青藏高原气温变化的因素有很多,主要包括天文因素、高原内部气象要素以及外部环流影响等.  相似文献   

15.
地面空气湿度直接影响人体驱散热负荷的效率,持续高温高湿天气将会严重影响人体健康。基于综合考虑温度和湿度协同作用的热胁迫指数——湿球黑球温度(WBGT)指数定义热浪,利用参考时期(1986—2005年)中国824个气象站点逐日平均气温和逐日相对湿度资料以及CMIP5多模式相应模拟数据,论文定量描述了未来时期(2076—2095年)不同排放情景下(RCP2.6、RCP4.5和RCP8.5)中国大陆地区可能遭遇的热浪事件的空间分布特征及其变化。研究结果表明:① 最有效的减排情景(RCP2.6)和高排放情景(RCP8.5)下中国大陆地区的平均热浪日数分别是参考时期的3.4倍和6.6倍,平均热浪强度(一年内所有热浪事件中日平均WBGT指数的最大值)也相对升高了1.6 ℃和4.9 ℃,未来时期RCP8.5情景下中国东部和南部地区的最高年均热浪强度甚至将达到40 ℃;② 虽然青藏高原地区的热浪强度等级低,但是未来时期热浪日数的增加幅度较为显著;③ 华南、长江中下游以及少数西南地区是综合考虑气温和湿度协同作用对人体热舒适的影响下,未来时期可能发生热浪最严重的地区,如果不考虑湿度要素的影响,那么将极有可能低估热浪在中国华南和东部等湿度较高地区的强度和影响。  相似文献   

16.
刘晓娟  黎夏  梁迅  石洪  欧金沛 《热带地理》2019,39(3):397-409
基于代表性浓度路径情景(Representative Concentration Pathways, RCPs),耦合FLUS-InVEST(Future Land Use Simulation-Integrated Valuation of Ecosystem Services and Trade-offs, FLUS-InVEST)模型,以土地利用视角模拟了中国2100年的陆地生态系统碳储量,探讨其空间分异。结果表明:1)历史土地利用变化作用下,中国生态系统碳储量减少中心由华北地区转向东北地区,增加中心由西北地区转向西南地区;碳储量的减少由林地生态系统转向草地生态系统。2)未来RCPs情景下,中国林地生态系统碳储量都将持续增加,草地生态系统碳储量持续减少。RCP 6.0情景下,中国林地面积将增加9.43%左右,草地面积减少5.42%,全国林地碳储量较2010年增加2 332.64 Tg,而草地碳储量将损失1 719.03 Tg。在RCP 8.5情景下,全国林地面积增加5.15%,草地面积将减少5.10%,林地碳储量较2010年将增加1 754.59 Tg,草地碳储量将损失2 468.80 Tg。3)RCP 6.0情景对未来碳汇贡献度较RCP 8.5情景大。在RCP 6.0情景下,植被地上碳储量和表层土壤碳储量分别净增加127.12和83.67 Tg。但在RCP 8.5情景下,植被地上碳储量和表层土壤碳储量分别净减少24.67和32.41 Tg。4)不同RCPs情景下,碳储量增长均集中在横断山-秦岭-太行山-大兴安岭和雪峰山-太行山-大兴安岭两带;减少区域主要分布于云贵高原、四川盆地和京津冀地区。  相似文献   

17.
For quantitatively explaining the correlations between the vascular plant species abundance(VPSA) and habitat factors, a spatial simulation method has been developed to simulate the distribution of VPSA on the Qinghai-Tibet Plateau. In this paper, the vascular plant type, land cover, mean annual biotemperature, average total annual precipitation, topographic relief, patch connectivity and ecological diversity index were selected to screen the best correlation equation between the VPSA and habitat factors on the basis of 37 national nature reserves on the Qinghai-Tibet Plateau. The research results show that the coefficient of determination between VPSA and habitat factors is 0.94, and the mean error is 2.21 types per km~2. The distribution of VPSA gradually decreases from southeast to northwest, and reduces with increasing altitude except the desert area of Qaidam Basin. Furthermore, the scenarios of VPSA on the Qinghai-Tibet Plateau during the periods from 1981 to 2010(T0),from 2011 to 2040(T2), from 2041 to 2070(T3) and from 2071 to 2100(T4) were simulated by combining the land cover change and the climatic scenarios of CMIP5 RCP2.6, RCP4.5 and RCP8.5. The simulated results show that the VPSA would generally decrease on the Qinghai-Tibet Plateau from T0 to T4. The VPSA has the largest change ratio under RCP8.5 scenario, and the smallest change ratio under RCP2.6 scenario. In general, the dynamic change of habitat factors would directly affect the spatial distribution of VPSA on the Qinghai-Tibet Plateau in the future.  相似文献   

18.
长江源区地表水资源对气候变化的响应及趋势预测(英文)   总被引:2,自引:0,他引:2  
In this paper,variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data,as well as the impact data set(version 2.0) published by the National Climate Center in November 2009.The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years,especially after 2004.The trend was very clearly shown,and there were quasi-periods of 9 years and 22 years,where the Tibetan Plateau heating field enhanced the effect,and the plateau monsoon entered a strong period.Precipitation notably increased,and glacier melt water increased due to climate change,all of which are the main climatic causes for increases in water resources in the source region.Based on global climate model prediction,in the SRESA1B climate change scenarios,water resources are likely to increase in this region for the next 20 years.  相似文献   

19.
Explicitly identifying the spatial distribution of ecological transition zones(ETZs) and simulating their response to climate scenarios is of significance in understanding the response and feedback of ecosystems to global climate change. In this study, a quantitative spatial identification method was developed to assess ETZ distribution in terms of the improved Holdridge life zone(iHLZ) model. Based on climate observations collected from 782 weather stations in China in the T0(1981–2010) period, and the Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project(IPCC CMIP5) RCP2.6, RCP4.5, and RCP8.5 climate scenario data in the T1(2011–2040), T2(2041–2070), and T3(2071–2100) periods, the spatial distribution of ETZs and their response to climate scenarios in China were simulated in the four periods of T0, T1, T2, and T3. Additionally, a spatial shift of mean center model was developed to quantitatively calculate the shift direction and distance of each ETZ type during the periods from T0 to T3. The simulated results revealed 41 ETZ types in China, accounting for 18% of the whole land area. Cold temperate grassland/humid forest and warm temperate arid forest(564,238.5 km~2), cold temperate humid forest and warm temperate arid/humid forest(566,549.75 km~2), and north humid/humid forest and cold temperate humid forest(525,750.25 km~2) were the main ETZ types, accounting for 35% of the total ETZ area in China. Between 2010 and 2100, the area of cold temperate desert shrub and warm temperate desert shrub/thorn steppe ETZs were projected to increase at a rate of 4% per decade, which represented an increase of 3604.2, 10063.1, and 17,242 km~2 per decade under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The cold ETZ was projected to transform to the warm humid ETZ in the future. The average shift distance of the mean center in the north wet forest and cold temperate desert shrub/thorn grassland ETZs was generally larger than that of other ETZs, with the mean center moving to the northeast and the shift distance being more than 150 km during the periods from T0 to T3.In addition, with a gradual increase of temperature and precipitation, the ETZs in northern China displayed a shifting northward trend, while the area of ETZs in southern China decreased gradually, and their mean center moved to high-altitude areas. The effects of climate change on ETZs presented an increasing trend in China, especially in the Qinghai-Tibet Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号