首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper utilizes and expands on existing coupled BEM–FEM (finite element method) methods for the investigation of the effects of soil structure interaction (SSI) on both an un-retrofitted and seismically isolated typical bridge structure. A simple numerical model of the bridge and surrounding soil is formulated and excited by an earthquake excitation. Utilizing Newmark's β FEM solution method along with the closed form B-spline BIRF method, the structural damped period, composite damping ratio, pier relative displacement, and base shear demand are monitored. From these results, the effects of SSI on this structure are identified. Additionally, the importance of the relative rigidity between the soil-foundation system and the bridge structure is also investigated. The results of the studies indicate that the response of the complete structure system considered is affected by the inclusion of SSI effects. Furthermore, the efficiency of the isolation measures designed using fixed base conditions is decreased by considering SSI over a certain relative rigidity range that is quantified using the structure to soil-foundation natural frequency ratio.  相似文献   

2.
Nonparametric techniques for estimation of wave dispersion in buildings by seismic interferometry are applied to a simple model of a soil–structure interaction (SSI) system with coupled horizontal and rocking response. The system consists of a viscously damped shear beam, representing a building, on a rigid foundation embedded in a half‐space. The analysis shows that (i) wave propagation through the system is dispersive. The dispersion is characterized by lower phase velocity (softening) in the band containing the fundamental system mode of vibration, and little change in the higher frequency bands, relative to the building shear wave velocity. This mirrors its well‐known effect on the frequencies of vibration, i.e. reduction for the fundamental mode and no significant change for the higher modes of vibration, in agreement with the duality of the wave and vibrational nature of structural response. Nevertheless, the phase velocity identified from broader band impulse response functions is very close to the superstructure shear wave velocity, as found by an earlier study of the same model. The analysis reveals that (ii) the reason for this apparent paradox is that the latter estimates are biased towards the higher values, representative of the higher frequencies in the band, where the response is less affected by SSI. It is also discussed that (iii) bending flexibility and soil flexibility produce similar effects on the phase velocities and frequencies of vibration of a building. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
An investigation is presented of the collapse of a 630 m segment (Fukae section) of the elevated Hanshin Expressway during the 1995 Kobe earthquake. The earthquake has, from a geotechnical viewpoint, been associated with extensive liquefactions, lateral soil spreading, and damage to waterfront structures. Evidence is presented that soil–structure interaction (SSI) in non‐liquefied ground played a detrimental role in the seismic performance of this major structure. The bridge consisted of single circular concrete piers monolithically connected to a concrete deck, founded on groups of 17 piles in layers of loose to dense sands and moderate to stiff clays. There were 18 spans in total, all of which suffered a spectacular pier failure and transverse overturning. Several factors associated with poor structural design have already been identified. The scope of this work is to extend the previous studies by investigating the role of soil in the collapse. The following issues are examined: (1) seismological and geotechnical information pertaining to the site; (2) free‐field soil response; (3) response of foundation‐superstructure system; (4) evaluation of results against earlier studies that did not consider SSI. Results indicate that the role of soil in the collapse was multiple: First, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure. Second, the compliance of soil and foundation altered the vibrational characteristics of the bridge and moved it to a region of stronger response. Third, the compliance of the foundation increased the participation of the fundamental mode of the structure, inducing stronger response. It is shown that the increase in inelastic seismic demand in the piers may have exceeded 100% in comparison with piers fixed at the base. These conclusions contradict a widespread view of an always‐beneficial role of seismic SSI. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
It is commonly understood that earthquake ground excitations at multiple supports of large dimensional structures are not the same. These ground motion spatial variations may significantly influence the structural responses. Similarly, the interaction between the foundation and the surrounding soil during earthquake shaking also affects the dynamic response of the structure. Most previous studies on ground motion spatial variation effects on structural responses neglected soil–structure interaction (SSI) effect. This paper studies the combined effects of ground motion spatial variation, local site amplification and SSI on bridge responses, and estimates the required separation distances that modular expansion joints must provide to avoid seismic pounding. It is an extension of a previous study (Earthquake Engng Struct. Dyn. 2010; 39 (3):303–323), in which combined ground motion spatial variation and local site amplification effects on bridge responses were investigated. The present paper focuses on the simultaneous effect of SSI and ground motion spatial variation on structural responses. The soil surrounding the pile foundation is modelled by frequency‐dependent springs and dashpots in the horizontal and rotational directions. The peak structural responses are estimated by using the standard random vibration method. The minimum total gap between two adjacent bridge decks or between bridge deck and adjacent abutment to prevent seismic pounding is estimated. Numerical results show that SSI significantly affects the structural responses, and cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the seismic performance of moment-resisting frame steel buildings with multiple underground stories resting on shallow foundations. A parametric study that involved evaluating the nonlinear seismic response of five, ten and fifteen story moment-resisting frame steel buildings resting on flexible ground surface, and buildings having one, three and five underground stories was performed. The buildings were assumed to be founded on shallow foundations. Two site conditions were considered: soil class C and soil class E, corresponding to firm and soft soil deposits, respectively. Vancouver seismic hazard has been considered for this study. Synthetic earthquake records compatible with Vancouver uniform hazard spectrum (UHS), as specified by the National Building Code of Canada (NBCC) 2005, have been used as input motion. It was found that soil–structure interaction (SSI) can greatly affect the seismic performance of buildings in terms of the seismic storey shear and moment demand, and the deformations of their structural components. Although most building codes postulate that SSI effects generally decrease the force demand on buildings, but increase the deformation demand, it was found that, for some of the cases considered, SSI effects increased both the force and deformation demand on the buildings. The SSI effects generally depend on the stiffness of the foundation and the number of underground stories. SSI effects are significant for soft soil conditions and negligible for stiff soil conditions. It was also found that SSI effects are significant for buildings resting on flexible ground surface with no underground stories, and gradually decrease with the increase of the number of underground stories.  相似文献   

7.
The stationary response of base-isolated buildings subjected to earthquake excitation is studied. The frequency content of earthquake input is described by the Clough-Penzien spectral model. The response parameters of interest are (1) the root-mean-square (RMS) displacement σx of the basement relative to the foundation (i.e. shear deformation of the isolation system) and (2) the ratio (σaa0) of the RMS value of the absolute acceleration at the roof of the isolated structure over the corresponding value when the isolation system is locked. The variation of these response parameters with the effective frequency f0 of the base-isolated structure is investigated. As input, earthquakes with moment magnitudes M = 7-3 and M = 6-0 are considered. The acceleration spectra corresponding to these two earthquake sizes have pronouncedly different frequency content over the frequency range 0–1-1–0 Hz which is of primary importance for base-isolated structures. An important conclusion that comes from these analyses is that confidence in the effectiveness of a base-isolated system should be based primarily on its capacity to absorb/dissipate energy and less on its influence in shifting the fundamental period of the structure out of the range of dominant earthquake energy.  相似文献   

8.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper an efficient methodology applying modal analysis is developed to assess systematically the combined soil–structure interaction and torsional coupling effects on asymmetric buildings. This method is implemented in the frequency domain to accurately incorporate the frequency‐dependent foundation impedance functions. For extensively extracting the soil–structure interaction effects, a diagonal transfer matrix in the modal space is derived. A comprehensive investigation of asymmetric building–soil interaction can then be conveniently conducted by examining various types of response quantities. Results of parametric study show that the increasing height‐to‐base ratio of a structure generally amplifies its translational and torsional responses. Moreover, both the translational and torsional responses are reduced for the case where the two resonant frequencies are well separated and this reduction is enhanced with the decreasing values of the relative soil stiffness and the height‐to‐base ratio. The most noteworthy phenomenon may be the fact that the SSI effects can enlarge the translational response if the structure is slender and the two resonant frequencies are very close. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   

13.
Output‐only system identification is developed here towards assessing current modal dynamic properties of buildings under seismic excitation. Earthquake‐induced structural response signals are adopted as input channels for two different Operational Modal Analysis (OMA) techniques, namely, a refined Frequency Domain Decomposition (rFDD) algorithm and an improved Data‐Driven Stochastic Subspace Identification (SSI‐DATA) procedure. Despite that short‐duration, non‐stationary, earthquake‐induced structural response signals shall not fulfil traditional OMA assumptions, these implementations are specifically formulated to operate with seismic responses and simultaneous heavy damping (in terms of identification challenge), for a consistent estimation of natural frequencies, mode shapes, and modal damping ratios. A linear ten‐storey frame structure under a set of ten selected earthquake base‐excitation instances is numerically simulated, by comparing the results from the two identification methods. According to this study, best up‐to‐date, reinterpreted OMA techniques may effectively be used to characterize the current dynamic behaviour of buildings, thus allowing for potential Structural Health Monitoring approaches in the Earthquake Engineering range.  相似文献   

14.
The effects of soil‐structure interaction (SSI) are often studied using two‐dimensional (2D) or axisymmetric three‐dimensional (3D) models to avoid the high cost of the more realistic, fully 3D models, which require 2 to 3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed using impedances for linear in‐plane 2D models with rectangular foundations, embedded in uniform or layered half‐space. They are computed by comparison with results for 3D rectangular foundations with the same vertical cross‐section and different aspect ratios. The structure is represented by a single degree‐of‐freedom oscillator. Correction factors are presented for a range of the model parameters. The results show that in‐plane 2D approximations overestimate the SSI effects, exaggerating the frequency shift, the radiation damping, and the reduction of the peak amplitude. The errors are larger for stiffer, taller, and heavier structures, deeper foundations, and deeper soil layer. For example, for a stiff structure like Millikan library (NS response; length‐to‐width ratio ≈ 1), the error is 6.5% in system frequency, 44% in system damping, and 140% in peak amplitude. The antiplane 2D approximation has an opposite effect on system frequency and the same effect on system damping and peak relative response. Linear response analysis of a case study shows that the NEHRP‐2015 provisions for reduction of base shear force due to SSI may be unsafe for some structures. The presented correction factor diagrams can be used in practical design and other applications.  相似文献   

15.
The aim of this paper is to adjust behaviour models for each class of structure for vulnerability assessment by using ambient vibration. A simple model based on frequencies, mode shapes and damping, taken from ambient vibrations, allows computation of the response of the structures and comparison of inter‐storey drifts with the limits found in the literature for the slight damage grade, considered here as the limit of elastic behaviour. Two complete methodologies for building fragility curves are proposed: (1) using a multi‐degree of freedom system including higher modes and full seismic ground‐motion and (2) using a single‐degree of freedom model considering the fundamental mode f0 of the structure and ground‐motion displacement response spectra SD(f0). These two methods were applied to the city of Grenoble, where 60 buildings were studied. Fragility curves for slight damage were derived for the various masonry and reinforced concrete classes of buildings. A site‐specific earthquake scenario, taking into account local site conditions, was considered, corresponding to an ML = 5.5 earthquake at a distance of 15 km. The results show the benefits of using experimental models to reduce variability of the slight damage fragility curve. Moreover, by introducing the experimental modal model of the buildings, it is possible to improve seismic risk assessment at an overall scale (the city) or a local scale (the building) for the first damage grade (slight damage). This level of damage, of great interest for moderate seismic‐prone regions, may contribute to the seismic loss assessment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The knowledge of fundamental frequency and damping ratio of structures is of uppermost importance in earthquake engineering, especially to estimate the seismic demand. However, elastic and plastic frequency drops and damping variations make their estimation complex. This study quantifies and models the relative frequency drop affecting low‐rise modern masonry buildings and discusses the damping variations based on two experimental data sets: Pseudo‐dynamic tests at ELSA laboratory in the frame of the ESECMaSE project and in situ forced vibration tests by EMPA and EPFL. The relative structural frequency drop is shown to depend mainly on shaking amplitude, whereas the damping ratio variations could not be explained by the shaking amplitude only. Therefore, the absolute frequency value depends mostly on the frequency at low amplitude level, the amplitude of shaking and the construction material. The decrease in shape does not vary significantly with increasing damage. Hence, this study makes a link between structural dynamic properties, either under ambient vibrations or under strong motions, for low‐rise modern masonry buildings. A value of 2/3 of the ambient vibration frequency is found to be relevant for the earthquake engineering assessment for this building type. However, the effect of soil–structure interaction that is shown to also affect these parameters has to be taken into account. Therefore, an analytical methodology is proposed to derive first the fixed‐base frequency before using these results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.  相似文献   

18.
In-plane, dynamic soil–structure interaction (SSI) for incident-plane P and SV waves is analyzed for a two-dimensional (2D) model of a shear wall on a rigid foundation that is embedded in a soil layer over bedrock. The indirect-boundary-element method (IBEM) and non-singular Green's functions of distributed loads on inclined lines are used to solve the problem. Although this in-plane, dynamic SSI problem displays characteristics similar to those of 2D, out-of-plane, dynamic SSI, which was studied in our previous work, there exist some significant differences. In analyses of the SSI of the full-scale structures, which recorded strong earthquake shaking, our interpretations are often based on the peaks in the transfer functions of observed structural response. It is shown in this paper how the amplitudes and the frequencies of those peaks are affected by the relative rigidity and thichness of the soil layer below the foundation.  相似文献   

19.
In the conventional structural seismic analysis, the rigid base model is usually adopted without considering the flexibility of the ground, leading to inaccurate estimation of the vibration characteristics and the seismic response of the structure. In 2007, several in situ tests were conducted by the National Center for Research on Earthquake Engineering (NCREE) on the school buildings in the Guanmiao Elementary School in Tainan, Taiwan. For the study of soil–structure interaction (SSI) effects, the forced vibration test (FVT) was performed, and the deformation of the foundation system was measured during the pushover test. In this paper, the results of these in situ tests are presented and discussed, and the finite element models of the school buildings were generated for the simulation of the FVT and for the pushover analysis in order to investigate the difference between the rigid base model and the flexible base model. Results show that the mechanical properties of the structure and the foundation could be demonstrated in these in situ tests. Additionally, the introduction of the flexibility of the foundation has a considerable influence on the results of structural analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the effect of soil–structure interaction (SSI) on the seismic risk estimates of buildings. Risk, in this context, denotes the probability distribution of seismic monetary loss due to structural and nonstructural damage. The risk analysis here uncovers the probability that SSI is beneficial, detrimental, or uninfluential on seismic losses. The analyses are conducted for a wide range of buildings with different structural systems, numbers of stories, and foundation sizes on various soil types. A probabilistic approach is employed to account for prevailing sources of uncertainty, i.e., those in ground motion and in the properties of the soil–structure system. In this approach, probabilistic models are employed to predict the response, damage, and repair cost of buildings. To properly account for the ground motion uncertainty, a suite of nearly 7000 accelerograms recorded on soil is employed. It is concluded that structures on very soft soils are extremely likely to incur smaller losses due to SSI, which is in line with the common belief that SSI is a favorable effect for such systems. However, the results for buildings on moderately soft soils reveal a considerable probability, up to 0.4, that SSI has an adverse effect on the structure and increases the seismic losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号