首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
秸秆焚烧导致湖北中东部一次严重霾天气过程的分析   总被引:1,自引:0,他引:1  
利用地面气象要素、火点信息及污染物资料,研究了2014年6月12~13日湖北省中东部地区一次重度霾天气的成因及污染特征。结果表明:导致此次霾天气的主要原因是安徽省北部大面积秸秆焚烧所形成污染气团受偏东北气流输送的影响,12日在湖北中东部形成了两条"带状"的能见度低值区,最低能见度仅为2.1 km。秸秆焚烧污染物输送气流由北向南影响湖北,主要作用于孝感—武汉—咸宁一带,3个地区细颗粒物(PM2.5)峰值浓度均超过了600μg/m3,且武汉和孝感的PM2.5与PM10质量浓度比值在12日增加到0.76和0.77,并出现了0.96和0.93的最大值,随着污染气团的传输,其中PM2.5所占比例会出现明显下降。SO2质量浓度的变化特征不显著,NO2质量浓度在污染物质量浓度达到峰值前1~3 h达到峰值,而CO是秸秆焚烧产生的主要污染气体,其质量浓度变化与PM2.5和PM10呈正相关关系,相关系数分别为0.66和0.67。风矢量和分析表明:6月12日湖北省中东部存在明显的东北来向气流输送,污染物的输送是该时段霾天气发生的主要影响因子,而6月13日湖北省东北边界处的输送气流已经明显减弱消失,东南部风矢量和异常偏小导致的污染物堆积是该地区污染持续的主要原因。  相似文献   

2.
将2001-2008年分为沙尘天气相对多年和相对少年,计算兰州市春季逐日4个时次的4d气团后向轨迹。通过聚类分析得到春季到达兰州市区的主要气团轨迹组,结合可吸入颗粒物PM10日均质量浓度资料,通过计算潜在源贡献因子PSCF(potential source contribution function)和浓度权重轨迹CWT(concentration-weighted trajectory),得到影响兰州市春季PMlo质量浓度的潜在源区以及不同源区对兰州市春季PM10质量浓度贡献的差异。结果表明,在沙尘天气相对多年,西路径和西北路径发生比例最高,分别占总轨迹的33%和19.4%,其中有50%以上为污染轨迹,是造成兰州市春季高质量浓度PM10污染的主要输送路径。沙尘天气相对少年的主要输送路径是西路径,其次是北路径,分别占23.6%和18%。影响兰州市春季大气PM10质量浓度的潜在源区分布在新疆塔里木盆地、吐鲁番盆地、青海柴达木盆地、甘肃河西走廊、内蒙古中部和西部的沙漠戈壁地区。  相似文献   

3.
利用2017-2019年空气质量监测数据,采用HYSPLIT后向轨迹模式、聚类分析、潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),对运城市秋冬季大气PM2.5传输路径、对应重污染的天气形势和潜在源区进行分析。结果表明:(1)运城近地层盛行偏东风时污染频率高,弱的偏东风和西南风时,污染物浓度较大。秋冬季PM2.5后向轨迹西北方向最多达53.53%,偏东方向最少为11.25%,偏西方向和西南方向介于两者之间,分别为16.61%和12.06%。(2)不同轨迹对应天气形势不同,西北和偏西轨迹下,500 hPa高度场上为两槽一脊或偏西气流,700~850 hPa受脊前西北气流影响,地面为高压前底部型或均压场型;西南轨迹下,500 hPa高度场上为偏西气流,700~850 hPa运城处于槽前西南气流,地面气压场为高压前底部(底部)或均压场。(3)运城PM2.5潜在源区主要位于陕西南部、四川东部和新疆东南、甘肃的东南部等地区,说明影响运城秋冬季PM2.5的浓度除了来自汾渭平原西南部的颗粒物区域输送,来自西北方向新疆、甘肃的远距离颗粒物传输也是重要来源。  相似文献   

4.
对2015年3月至2018年2月共36个月荆门市PM2.5浓度值按月和季节作特征分析,利用HYSPLIT轨迹模型对污染最为严重的冬季进行后向48h气团轨迹模拟。结果表明:PM2.5月均浓度表现为1月最高,达到107μg/m3,7月最低,为30μg/m3,冬季平均值为92μg/m3,显著高于其它季节,并且冬季高浓度PM2.5主要与本地地面5—11m/s的偏北(N、NNE)大风伴随出现;气团轨迹分为西南、东北、西北三个路径,近地面传输的东北路径和高空传输的西南路径气团均引起PM2.5浓度升高,而西北路径气团整体上对污染物具有一定清除作用;东北路径方向的河南以及靠近荆门市的西北、西南向地区为48h的潜在源贡献大值区。在通过气象条件定性判断荆门未来的PM2.5浓度变化时,因东北路径近地面传输的特性,应关注上游潜在源区内地面站点PM2.5的浓度值;对于高空传输的西南路径,应关注高空水汽的输送情况,以及轨迹高度下降地区即水汽的沉降区是否在潜在源区;西北路径为干冷空气的高空传输,在较接近荆门时轨迹高度才开始明显下降,应关注西北方向近距离潜在源区的地面站点PM2.5的浓度值。  相似文献   

5.
针对2016年12月29日—2017年1月6日山西省太原市内发生的一次重污染天气过程,通过分析常规天气条件,SO2、PM2.5和PM10的排放清单以及后向轨迹模式,探讨本次重污染事件的成因。结果表明:本次污染事件持续时间长,重度染污持续将近5 d,多种污染物浓度严重超标,细粒子是污染过程的主要贡献;太原市处于冷空气较弱和水汽条件较好的大尺度大气环流形势下,为冷高压持续稳定,近地面风速小、风力弱地面形势下,形成了大范围、长时间的静稳天气;在污染期间太原地区主要受到来自西北和西部共四种气流输送类型的控制,其中来自西北的气流输送轨迹对应的污染物浓度明显小于其他三条轨迹对应的污染物浓度,输送轨迹的输送高度可能是造成轨迹对应污染物浓度之间差异的一个原因,结合污染物排放源分布发现这次污染事件的形成受本地源和长/近距离输送的共同影响,其中本地源的贡献更为显著。  相似文献   

6.
根据海南省环境科学研究院提供的海口站2013—2016年逐日空气污染数据,统计分析了海口市空气质量状况。综合应用高低空环流场、AQI指数结合MODIS卫星蓝光气溶胶厚度图,采用HYSPLIT轨迹聚类分析法、潜在源贡献因子法和浓度权重轨迹分析方法,重点分析了2013年12月海口空气污染的的主要输送路径,并探讨了首要污染物PM2.5和O3的潜在源区。结果表明:冬夏季风风向转换是海口发生空气污染的最主要气象原因,且首要污染物为PM2.5,其次是PM10和O3;海口市空气质量达标率在97.1%,总体较好,AQI指数呈逐年下降趋势;值得关注的是,O3呈逐年稳定上升趋势。大气污染物浓度受污染物排放和环流场共同影响,海口污染日对应的地面天气形势主要有3种类型,冷高压、变暖高压脊和台风外围下沉气流。此次污染过程中污染源是来自北方地区污染物长距离输送影响的结果。污染物个例分析中,首要污染物PM2.5潜在源区主要集中在湖南和江西的交界处、广东沿海地区、广西北部、江西和福建的交界处以及浙江中部地区,这些潜在源区气团沿着轨迹1、2和4通过长距离输送到海口。海口O3质量浓度贡献较大的区域主要集中在湖南和江西的交界处、粤西一带,主要沿着轨迹2将内陆地区的污染源输送到海口。  相似文献   

7.
利用贵州省安顺市2015—2019年大气污染物资料和气象资料,分析安顺市空气质量特征和主要大气污染物特征,通过TrajStat软件中HYSPLIT模型的后向轨迹模式,结合GDAS气象数据、PM2.5浓度,分析不同季节输送途径及其污染轨迹,采用潜在源贡献作用和浓度权重轨迹分析方法,分析研究期内所有PM2.5污染日(PM2.5日浓度高于75 μg·m-3)输送轨迹垂直与水平方向分布特征。结果表明: PM2.5是安顺城区主要大气污染物,冬季输送污染轨迹占比较大,输送方向主要为贵州东北方向、偏南方向; 污染日PM2.5输送路径以贵州东北方向近距离输送为主,该类轨迹基本分布在880—980 hPa高度; 潜在源高值区主要集中在贵阳整个地区、毕节织金县、黔西市、金沙县等,高贡献值区主要集中在安顺紫云县、镇宁县、毕节织金县、大方县等。  相似文献   

8.
根据2008—2015年上海崇明东滩大气成分观测站(以下简称东滩站)大气颗粒物(PM)观测数据,分析其浓度水平、变化趋势、影响气团和潜在源区。结果表明,2008—2015年东滩站PM质量浓度的长期变化趋势不显著,但细粒子(PM_(2.5))比例不断升高。PM_(2.5)/PM_(10)从0.84上升至0.92,表明二次气溶胶占比趋于增加。对8年大样本数据进行后向轨迹聚类,发现东滩站主要受大陆型、海洋型、大陆/海洋混合型气团影响,三者所占比率分别为32.0%、38.8%、29.3%。海洋型气团中PM_(2.5)本底质量浓度为11~15μg·m^(-3),而大陆型气团中PM_(2.5)本底质量浓度的季节差异显著,在29~56μg·m^(-3)波动,对东滩站具有明显的输入效应。东滩站PM_(2.5)的潜在源区随季节变化,秋季和冬季主要受华北、黄淮、苏皖影响,春季收缩至苏皖和浙江北部,夏季则转换至长三角南部的浙江及浙闵沿海。总体而言,上海及周边的苏锡常、杭嘉湖对东滩PM_(2.5)浓度贡献最显著,来自渤海、黄海近海污染回流的贡献也不可忽视。  相似文献   

9.
基于南昌市大气环境监测、地面气象观料和GDAS等资料,主要采用后向轨迹聚类分析、潜在源贡献因子和浓度权重轨迹分析方法,分析了2020年南昌市大气污染特征和污染物潜在源区。结果表明:1)南昌市春、夏、秋季以O_(3)污染为主,冬季以PM_(2.5)污染为主。2)大气污染物质量浓度日变化具有明显的季节性特征,PM_(2.5)和PM_(10)在春、秋、冬季呈双峰形分布,NO_(2)在秋、冬季呈弱双峰形分布,春、夏季呈单峰分布,O_(3)呈单峰形分布。南昌市东部大气污染较西部更严重。3)南昌市气流输送季节差异明显,春、秋、冬季主要受偏北气流影响,夏季主要受偏南气流影响。本地源是南昌市大气污染的主要潜在源,安徽省南部、湖北省东部、上饶市西部和九江市的区域输送也有一定贡献。  相似文献   

10.
两次秸秆焚烧污染过程的气象条件对比分析   总被引:1,自引:1,他引:0  
毛宇清  李聪  沈澄  刘冬晴  王永平 《气象》2013,39(11):1473-1480
利用常规气象资料、卫星遥感监测资料、污染物浓度资料和NECP/NCAR再分析资料,结合气流后向轨迹模拟,对比分析了南京地区2011年6月10和13日两次由于秸秆焚烧而引起的严重空气污染事件的天气条件、大气边界层特征以及污染物的来源和输送路径等。结果表明:两次污染过程中PM2.5浓度均出现陡升陡降,由秸秆焚烧而产生的细粒子贡献显著。13日高污染的持续时间和强度都高于10日,10日的高低空形势配置和物理量场有利于降水的产生,对污染物有一定的冲刷作用,而13日的高低空形势配置和物理量场则有利于污染物在边界层堆积。两次污染过程的边界层逆温均不明显。气流后向轨迹模拟表明,两次过程都是由区域污染输送造成的,都主要来源于苏中、苏北地区,13日的污染源可能还有苏南和安徽地区。  相似文献   

11.
利用全国空气质量指数(Air Quality Index,AQI)、PM_(2.5)地面观测数据、全球数据同化系统GDAS数据和FNL再分析气象资料,研究了2015/2016年冬季南京北郊空气质量变化特征以及环境输送条件和污染物源区。结果表明:以AQI为代表的冬季江淮地区污染程度存在3种典型的污染物跨区域输送路径—西北路径、北方路径和西南路径。西北路径通常发生在蒙古高压较强,且处于平均位置时刻,南京北郊上空有冷平流,不利于污染物扩散;北方路径对应蒙古高压弱,东北附近为弱高压控制,偏北气流将污染物带至南京北郊,如跨海洋,则污染减弱;西南路径对应南京北郊为边界层内反气旋式环流中心,下沉气流十分不利于污染物扩散。影响南京北郊污染的潜在源区主要分布在河北南部、山东西部、河南南部、安徽东部和湖北西部。河北省是重要的污染源区,河北南部和山东西部污染物通过北方路径输送至南京北郊,因此北方路径虽发生污染概率少于其他两种,却是形成南京北郊严重污染的重要路径。河南南部污染物通过西北路径输送。安徽和湖北污染物通过西南路径输送。定量分析表明,平流输送是南京北郊重度污染的重要原因,近地层风速对AQI的平流输送占AQI变化的贡献率超过70%,甚至可达85%。  相似文献   

12.
PM2.5污染仍然是湖北省冬季大气污染的首要污染类型,且具有明显区域传输特征,重污染过程的空气污染气象条件有别于华北地区,值得关注。采用WRF/Chem不同排放情景下的模拟结果,并结合观测分析,研究了2015年12月—2016年1月湖北省PM2.5重污染过程的气象输送条件及日变化特征,从大尺度输送条件和局地边界层动力作用分析了外来污染物水平传输、悬浮聚集和向下传输的过程,并解释了该地区观测到的午后PM2.5浓度特殊峰值的气象成因。结果表明,湖北重污染爆发以区域传输为主,地面观测PM2.5极值对应10 m风速可达8—10 m/s,边界层0—1 km为较强偏北风输送,污染传输通量极值位于400 m高度附近,为重要传输通道,低空无明显逆温,重污染过程具有“非静稳”边界层气象特征。重污染形成的大尺度输送条件为,长江中下游及北部地区偏北风异常偏强,南部地区风速减缓,使污染物在中游平原堆积,鄂北边界风速越大,越有利污染输送增长。传输性污染主要来自偏北和东北方向的污染源输送,潜在源区贡献主要为途经偏北通道上的豫中、南阳盆地和关中地区,以及途经东北通道上的鲁、皖、苏等部分地区。PM2.5浓度日变化双峰结构的天气成因不同,21—24时(北京时)峰值为静稳性污染,11—14时峰值为传输性污染。污染输送受大气边界层高度影响,日出前大气边界层高度较低,层结稳定并伴有上升运行,使得低空外来输送悬浮聚集在400 m高度附近;日出后随大气边界层高度升高,静稳层结被破坏,在干沉降作用下高浓度PM2.5开始向下传输,并在午后地面形成峰值。   相似文献   

13.
祁海霞  崔春光  赵天良  白永清  刘琳 《气象》2019,45(8):1113-1122
为了研究湖北省两种污染来源的重污染天气特征及其形成机制,采用WRF/Chem零排放情景模拟方案,将2015年冬季湖北省PM2.5模拟浓度分离为外源传输量和本地累积量,基于对数值模拟结果的统计分析,确定了湖北省污染传输通道和外源传输贡献率,研究了敏感区天气系统对两种污染来源的影响作用。结果表明,外源污染物输送在湖北省内有两条主要通道,一是由南襄盆地夹道直接输送汇入江汉平原,二是沿京广线从信阳到随州、孝感、武汉至江汉平原。湖北长距离跨区域传输的潜在污染源区为河南、安徽、江苏、山东等地。2015年冬季湖北省17个地(市)平均外源贡献率为42%,而对于重污染过程,平均外源贡献率高达66%,外来源输送对湖北重污染过程贡献非常显著。对外源传输型,我国东南地区为主要敏感区,气压(气温)变化与PM2.5输送显著负(正)相关,对维持南、北两支矢量带(PM2.5输送与风场相关),推动偏南和偏东气流起到积极作用。此外,伊朗高原天气系统通过上下游效应对东亚地区大气环流起到一定影响,从而也间接影响了区域污染输送。对本地累积型,冬季风环流系统为主要影响天气系统,在弱的冬季风环流形势下,蒙古高压系统偏弱、西太平洋地区海平面气压值偏高,对应湖北本地累积污染总量贡献大。  相似文献   

14.
熊秋芬  张玉婷  姜晓飞  张雅乐 《气象》2018,44(10):1267-1274
利用常规高空、地面观测资料、FY-2E卫星云图和NCEP再分析场,分析了2013年11月25日发生在中国东北东部的暴雪天气过程,并用HYSPLIT模式模拟了暴雪区上空气块的轨迹。结果表明:卫星云图显示暴雪发生在锢囚气旋的钩状云区中,且具有中尺度特征。钩状云区不同代表点、不同层次25日08时120 h气块的后向轨迹计算结果表明,在每个代表点的6条轨迹中,只有1条轨迹来自新疆以西地区的对流层上层,其他5条轨迹均来自蒙古国或我国北方地区的对流层中低层。几乎每条轨迹对应的气块在东移或南移时先以水平运动为主,伴有弱的下沉;中低层气块在72~24 h经过渤海湾和日本海;而中上层气块则主要经过黄海或东海,到达降雪区前几小时气块移速快并有明显的上升运动。对钩状云区不同代表点1500和3000 m上空120 h后向轨迹中气块湿度分析表明,来自东亚大陆的气块水汽含量并不大、相对湿度也小于60%,但在经过渤海湾和日本海时,海气交换使得气块的含水量和相对湿度均呈增加的趋势;特别是气块途径日本海的时间和距离越长,水汽含量越多。因此暴雪区的水汽主要来自日本海,其次是渤海湾。在降雪发生前几小时,气块随偏南风或东南风快速北移,相对湿度接近饱和并伴有上升运动,从而引起降雪。  相似文献   

15.
利用常规天气资料、地面观测资料、江西WebGIS雷达拼图和雷电监测资料,对2014—2016年江西出现的22次强雷电天气过程进行统计和对比分析。结果表明:江西强雷电天气易出现在赣北北部、南昌附近、上饶地区和吉安西部等区域;强雷电天气出现的环境背景场可分为副热带高压边缘型、副热带高压控制型、低涡切变型和台风外围型,最显著的特征是中高空经常伴有干冷舌侵入低层暖湿区;多项对流指数可以预测出现强雷电天气的可能性;雷达回波和雷电强度关系密切,回波类型以带状和块状为主;雷电强度和雷达回波强度有很好的对应关系,但产生强雷电的回波要具备强度大于50 dBz、强回波中心密实、强回波边缘梯度大等条件。  相似文献   

16.
合肥市PM10 输送轨迹分类研究   总被引:8,自引:2,他引:6  
应用聚类分析的方法,对2001—2005年合肥市逐日72 h后向轨迹按季节分类,结合PM10日均浓度观测资料,分析了不同输送轨迹与该地区PM10浓度之间的关系。结果表明:不同方向后向轨迹所对应的PM10平均浓度有明显不同;最高PM10平均浓度对应的后向轨迹在春、秋和冬季都是来自西北方向,它们与季节平均的相对距平分别为44%,20%和31%;夏季为东北方向,与季节平均的相对距平为20%;其次为本地轨迹,各季的相对距平分别为5%,16%,18%和17%。根据分析得出合肥地区6组易于出现高浓度PM10的后向轨迹及对应的天气形势,并简要分析了其特征。气溶胶的远程输送主要发生在自由大气层,区域输送主要发生在边界层内。合肥地区大气污染事件超过50%与远程输送有关。移动快的气团不一定对应低浓度的PM10。  相似文献   

17.
西宁市典型污染日PM10输送规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究西宁市PM10的区域性污染特征,对2006年3月至2010年2月各季逐日大气污染指数(API,首要污染物为PM10)进行统计分析。利用后向轨迹模型(HYSPLIT Model)对西宁市典型污染日(API > 200)中气团的后向轨迹进行模拟,研究PM10的运动轨迹和区域性污染的可能来源。结果表明:西宁市一年中春季(集中于3月和4月)PM10污染严重,与该季节气团对颗粒物的长距离输送有关。造成西宁市重污染状况的主要天气是风沙尘,北部和西北部的沙漠地区是主要风沙源;相邻城市PM10污染峰值的提前与滞后,体现出区域性污染的传输过程。  相似文献   

18.
针对2016年西宁市区稳定和沙尘两种不同天气形势,基于后向轨迹气团的聚类分析法、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT),结合市环境监测站PM_(10)浓度质量资料,分析了西宁市区不同天气形势下不同来源区域PM_(10)质量浓度的贡献影响及其潜在源区。结果表明:西宁市区稳定天气PM_(10)均来自青海省境内,PM_(10)输送路径以西方和东方转向路径最多,占总轨迹数的34.78%和30.43%;西方路径主要从青海省格尔木市向东输送,东方转向路径则从西宁市西部地区向东转而向西输送,两者经过的地区均没有明显的沙源;PM_(10)的潜在贡献源区主要在西宁市区及其北部与大通县和互助县交界地区。沙尘天气PM_(10)输送路径除了以来自青海省海西州的西方路径为最多外,甘肃省河西走廊的东方转向路径也较多,占比分别达到42.11%和36.84%;西方路径PM_(10)主要从沙漠地带南疆—青海省海西州西部向东输送,东方转向路径PM_(10)则经河西走廊沙源地进入西宁市区;PM_(10)污染主要是PM_(10)由沙源地输送进入西宁市区聚集所造成。地形对PM_(10)的输送路径有较大的影响。  相似文献   

19.
利用江西省气象观测站降水资料、NCEP/NCAR提供的FNL 再分析资料以及GDAS 资料,在分析2020年7月7—10日的梅雨锋连续区域大暴雨过程的环流形势和大尺度水汽特征基础上,引入NOAA开发的HYSPLIT模式,分析了此次连续暴雨过程的水汽源地。结果表明:1) 此次连续性暴雨过程是在梅雨锋暴雨天气形势下,东北冷涡引导冷空气南下与副高北侧暖湿气流在长江中下游交汇形成的;2) 暴雨过程中不同时段水汽通道不相同,前两日以西南方向和偏南方向的水汽输送为主,后两日则以西南方向的水汽通道为主,且水汽通量大值区与强降水有较好的对应;3) 后向轨迹模拟显示暴雨过程水汽轨迹有5条:大部分为1 500 m高度以上源自印度洋的水汽(77.6%),其次是1 500 m高度以下源自印尼群岛中部海域的水汽(13.2%),其他三条路径总和不足10%。4) 垂直方向上,有多条水汽输送通道相互叠加后向暴雨区输送,导致江西上空产生强的水汽辐合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号