首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

2.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

3.
A 10-year study of surface ozone mixing ratios in the Central Mediterranean was conducted based on continuous ozone measurements from 1997 to 2006 by a background regional Global Atmospheric Watch (GAW) station on the island of Gozo. The mean annual maximum mixing ratio is of the order of 66 ppbv in April–May with a broad secondary maximum of 64 ppbv in July–September. No long-term increase or decrease in the background level of surface ozone could be observed over the last 10 years. This is contrary to observations made in the Eastern Mediterranean, where a slow decrease in the background ozone mixing ratio was observed over the past 7 years. Despite the very high average annual ozone mixing ratio exceeding 50 ppbv—in fact, the highest average background ozone mixing ratio ever measured in Europe—, the diurnal O 3 max/O 3 min index of <1.40 indicates that the island of Gozo is a good site for measuring background surface ozone. However, frequent photosmog events from June to September during the past 10 years with ozone mixing ratios exceeding 90 ppbv indicate that the Central Mediterranean is prone to long-range transport of air pollutants from Europe by northerly winds. This was particularly evident during the so-called “August heatwave” of the year 2003 when the overall ozone mixing ratio was 4.6 ppbv higher than the average of all other 9 months of August since 1997. Air mass back-trajectory analysis of the August 2003 photosmog episodes on Gozo confirmed that ozone pollution originated from the European continent. Regression analysis was used to analyse the 10-year data set in order to model the behaviour of the ozone mixing ratio in terms of the meteorological parameters of wind speed, relative humidity, global radiation, temperature, month of year, wind sector, atmospheric pressure, and time of day (predictors). Most of these predictors were found to significantly affect the ozone mixing ratios. From March to November, the monthly average of the AOT40 threshold value for the protection of crops and vegetation against ozone was constantly exceeded on Gozo during the past 10 years.  相似文献   

4.
Sulfate-coated dust particles in the free troposphere over Japan   总被引:1,自引:0,他引:1  
Airborne aerosol collections were performed over Wakasa bay (36°00′N, 135°30′E) in March and Kumano open sea (34°00′N, 136°50′E) and Seto (35°10′N, 137°10′E) in July 2001 at altitudes between 1.0 and 5.8 km. The particles were individually analyzed using transmission electron microscopy (TEM). Relatively large mineral-dust (mostly clay) particles were abundant in the March samples. They also dominated in July in the mid-troposphere higher than 4 km altitude, whereas sea salt and ammonium sulfate were more abundant at lower altitudes. Ca-coated grid samples show many traces of aqueous sulfate droplets. The proportions of former sulfate droplets to the total collected particles apparently increased with increasing relative humidity at the time of sampling. TEM analysis revealed that a significant fraction of these former droplets enclose mineral-dust particles as well as sea salt, soot, and fly ash. Some enclose mixtures of mineral-dust, sea-salt, soot, and fly ash particles. The results provide evidence that mineral dust from the Asian continent could acquire coatings of sulfate while being transported in the free troposphere. The mineral-dust particles probably acquired the sulfate coatings either through heterogeneous uptake of gaseous SO2 and subsequent oxidation or through coagulation with cloud or fog droplets. The presence of the mixed particles in sulfate droplets also indicates that aggregation of particles of different origins occurred through cloud processing. Such sulfate-coated dust particles would affect cloud formation, precipitation, and chemistry of the free troposphere.  相似文献   

5.
In the summer of 2005, one negative lightning flash was artificially triggered in Shandong Province (117°48′ E, 37°42′N), middle latitude region of eastern China. The flash included 10 return strokes, and the geometric mean value of the current peak was 11.9 kA (the average value was 12.6 kA) with a maximum of 21.0 kA and a minimum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The geometric mean value of half peak width was 39 μs (the average value was 40 μs), which was much larger than the usual result. Based on the Diendorfer and Uman (DU) model, the return-stroke current waveforms and charge distribution along the lightning channel are discussed. The simulated current waveforms, being divided into breakdown and corona current components, are in agreement with the optical measurements when the two different discharge time constants are properly chosen.  相似文献   

6.
Ozone episodes (> 100 ppbv) were observed frequently in Jinan, an urban site located between the highly polluted Yangtze Delta and Beijing–Tianjin region in East China. In this study, the ozone episodes observed in 2004 were analysed using the Hybrid Single-particle Lagrangian Integrated Trajectory (HYSPLIT) model and surface meteorological data, as well as Air Pollution Index (API). The meteorological conditions of episode days and non-episode days were compared and examined, and categorization of 6 groups of backward trajectories was performed. The results show that, most episodes were caused by local photochemical production (e.g., induced by sufficient sunshine duration and high temperature) and pollutant accumulation (e.g., induced by little rainfall and low wind speed), and transport of pollutants from the highly polluted regions could significantly influence the air quality at the site, especially from Yangtze Delta region. In addition, three typical ozone episodes were analysed using HYSPLIT model to infer any long-distance transport and surface meteorological data to infer the local ozone production potential. At last, the functions and inadequacies about the usage of HYSPLIT model combined with surface meteorological data for the analysis of photochemical pollution were discussed.  相似文献   

7.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

8.
In the Atacama Desert, the narrow littoral plain and the adjacent mountain range have a unique climate. This area is locally called the “coastal desert with abundant cloudiness”, and extends from the coastline up to an elevation of 1000 m. The climate is designated as being BWn according to Köppen's Climate Classification as adapted for Chile. In the original classification the acronym (Bn) is used for foggy environments. Toward the east a “normal desert” climate (BW) is found. This is known as one of the most extreme deserts of the world. In the BWn areas there are meteorological differences between low and high elevation zones. The climate of the coastal plains and the mountains is described in this paper in order to show that there is an area where the climate differs from those classified as BWn and BW in the Chilean Climate Classification. This area is located between 650 and 1200 m a.s.l. and contains several fog oases or lomas vegetation, rich in biodiversity and endemism.The weather is warmer near sea level, with an annual average temperature of 18 °C. At high elevation sites like Alto Patache, the temperature decreases at a rate of 0.7 °C for every 100-m increase in altitude. The average annual minimum temperature often approaches 1 °C in winter, while the mean annual temperature range is significant (8.3 °C in Los Cóndores). The mean monthly relative humidity in Alto Patache is over 80%, except during the summer months. During autumn, winter and spring high elevation fog is present in the study area at altitudes ranging from 650 m up to 1060 m, giving annual water yields of 0.8 to 7 L m− 2 day− 1. If vegetation is used as an indicator, the foggy zone lies between 650 m a.s.l. and 1200 m a.s.l. About 70% of the mountain range experiences the foggy climate, as opposed to the coastal plains that are characterized by a cloudy climate.  相似文献   

9.
We report the results of two observation campaigns conducted during the Northern Hemisphere winters of 2005–6 and 2006–7 aiming to detect transient luminous events (TLEs) above winter thunderstorms in the vicinity of Israel and the eastern coastline of the Mediterranean Sea. In 10 out of 31 different observation nights we detected 66 events: 56 sprites and 10 Elves. The detection ranges varied from 250 to 450 km. Sprites were found to be produced by active cells with a vertical dimension of 5–9 km and cloud top temperature ~ − 40 °C, embedded in a much larger matrix of stratiform precipitating cloudiness. This configuration closely resembles the conditions for winter sprites in the Hokuriku region of Japan. Synchronized with the optical observations, ELF data were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the TLEs. These stations are located 500 km and 2100 km respectively from the Eastern Mediterranean Sea, where most TLEs occur. Among the optically observed TLE events, we found that all the ELF signals were produced solely by positive cloud-to-ground flashes (+ CGs), most of which were recorded in Israel (88%) and Hungary (77%). Calculation of the Charge Moment Change showed average values of 1400 ± 600 C km, with some extreme events exceeding 3500 C km. The average time delay between the ELF transient of the parent + CG and the observed sprites was 55 ms, with shorter delays for column sprites (42 ± 34 ms) compared to carrot sprites (68 ± 34). Furthermore, based on the ELF data, there were no early identifiable precursors to TLE occurrence in the regional lightning activity. From the spatial formation of the observed columniform sprites, we propose that columniform sprites are sometimes arranged in a 3-dimensional circular pattern, thus mapping the instantaneous electric field in the mesosphere.  相似文献   

10.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

11.
GPS-synchronized measurements of electric (E) field changes induced by lightning flashes were recorded at six stations in the northeastern verge of the Tibetan Plateau. The height and magnitude of charge neutralized by 65 return strokes, including 16 negative cloud-to-ground (CG) flashes and 2 positive CG flashes, have been fitted with the nonlinear least-square method based on the E field changes of CG flashes observed in a typical thunderstorm with larger-than-usual lower positive charge center (LPCC). Results show that the height of the charge region neutralized by negative CG flashes ranges from 3 km to 5 km above the ground, corresponding to an ambient temperature between − 2 °C and − 15 °C. For the two positive CG flashes, the neutralized charge regions are located at a height of about 5.5 km and the ambient temperature is about − 18 °C, indicating the existence of upper positive charge in the thunderstorm.  相似文献   

12.
To further investigate the influence of cloud base temperature, updraft velocity and precipitation particle constitution on cloud electrification, five thunderstorms in various regions of China were simulated by using the three-dimensional compressible hailstorm numerical model including inductive and non-inductive charging mechanisms. The results indicate that changes of cloud base temperature have an influence on the initial electrification. Comparison of the above cases shows that in the case of warm cloud base and moderate updraft velocity (< 20 m s−  1), active electrification occurred below the − 10 °C level before moving upward to the − 20 °C level. In contrast, when cloud base is cold and updraft velocity is intensive, the main charging region is at the − 20 °C or even higher level. In that case, the vertical extent of the main negative charge region becomes larger with the increase of cloud base temperature. Apart from the main dipolar or tripolar charge structure, some smaller charge regions with relatively high values of charge density may also appear. Frozen drops, originating mainly from supercooled raindrops, mainly get electrified through charging interactions with snow at or below the − 20 °C level. They are responsible for the negative charge region near the melting level at the initial stage of precipitation if there is a large supercooled raindrop content. Non-inductive charging during hail-snow collisions is rather weak, resulting in the charge density on hail of no more than − 0.01 nC m− 3.  相似文献   

13.
Dew and rain water collection in the Dalmatian Coast, Croatia   总被引:1,自引:0,他引:1  
Passive dew harvesting and rainwater collection requires a very small financial investment but can exploit a free, clean (outside urban/industrial zones) and inexhaustible source of water. This study investigates the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia, with emphasis on the dry summer season. In addition, we evaluate the utility of transforming abandoned roof rain collectors (“impluviums”) to collect dew water too. Two sites were chosen, an exposed open site on the coast favourable to dew formation (Zadar) and a less favourable site in a cirque of mountains in Komiža (Vis Island). Between July 1, 2003 and October 31, 2006, dew was collected two or three times per day on a 1 m2 inclined (30°) test dew condenser, together with standard meteorological data (air temperature and relative humidity, cloud cover, windspeed and direction). Maximum yields were 0.41 mm in Zadar and 0.6 mm in Komiža. The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža). Because of its physical setting, Komiža represents a poor location for dew collection. However, during the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rainfall. In both July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Refurbishing the abandoned impluviums to permit dew collection could then provide useful supplementary water, especially during the dry season. As an example, the 1300 m2 impluvium at Podšpilje near Komiža could provide, in addition to rain water, 14,000 L dew water per year.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in urban air samples of Konya, Turkey between August 2006 and May 2007. The concentrations of pollutants in both the gas and particulate phase were separately analysed. The average total (gas + particulate) concentrations of PAHs, PCBs and OCPs were determined as 206 ng m− 3, 0.106 ng m− 3, 4.78 ng m− 3 respectively. All of the investigated target compounds were dominantly found in the gas phase except OCPs. Higher air concentrations of PAHs were found at winter season while the highest concentrations of PCBs were determined in September. The highest OCPs were detected in October and in March. In urban air of Konya, PCB 28 and PCB 52 congeners represent 46% and 35% of total PCBs while Phenanthrene, Fluoranthene, Pyrene accounted for 29%, 13%, 10% of total PAHs. HCH compounds (α + β + γ + δ-HCH), total DDTs (p,p′-DDE, p,p′-DDD, p,p′-DDT), Endosulfan compounds (Endosulfan I, Endosulfan II, Endosulfan sulfate) were dominantly determined as 30%, 21%, 20% of total OCPs respectively. Considering the relation between these compounds with temperature, there was no significant correlation observed. Despite banned/restricted use in Turkey, some OCPs were determined in urban air. These results demonstrated that they are either illegally being used in the course of agricultural activity and gardens in Konya or they are residues of past use in environment. According to these results, it can be suggested that Konya is an actively contributing region to persistent organic pollutants in Turkey.  相似文献   

15.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

16.
The remarkable wide range spatial scaling of TRMM precipitation   总被引:1,自引:0,他引:1  
The advent of space borne precipitation radar has opened up the possibility of studying the variability of global precipitation over huge ranges of scale while avoiding many of the calibration and sparse network problems which plague ground based rain gage and radar networks. We studied 1176 consecutive orbits of attenuation-corrected near surface reflectivity measurements from the TRMM satellite PR instrument. We find that for well-measured statistical moments (orders 0 < < 2) corresponding to radar reflectivities with dBZ < 57 and probabilities > 10− 6, that the residuals with respect to a pure scaling (power law) variability are remarkably low: ± 6.4% over the range 20,000 km down to 4.3 km. We argue that higher order moments are biased due to inadequately corrected attenuation effects. When a stochastic three — parameter universal multifractal cascade model is used to model both the reflectivity and the minimum detectable signal of the radar (which was about twice the mean), we find that we can explain the same statistics to within ± 4.6% over the same range. The effective outer scale of the variability was found to be 32,000 ± 2000 km. The fact that this is somewhat larger than the planetary scale (20,000 km) is a consequence of the residual variability of precipitation at the planetary scales. With the help of numerical simulations we were able to estimate the three fundamental parameters as α ≈ 1.5, C1 = 0.63 ± 0.02 and H = 0.00 ± 0.01 (the multifractal index, the codimension of the mean and the nonconservation parameter respectively). There was no error estimate on α since although α = 1.5 was roughly the optimum value, this conclusion depended on assumptions about the instrument at both low and high reflectivities. The value H = 0 means that the reflectivity can be modeled as a pure multiplicative process, i.e. that the reflectivity is conserved from scale to scale. We show that by extending the model down to the inner “relaxation scale” where the turbulence and rain decouple (in light rain, typically about 40 cm), that even without an explicit threshold, the model gives quite reasonable predictions about the frequency of occurrence of perceptible precipitation rates.While our basic findings (the scaling, outer scale) are almost exactly as predicted twenty years ago on the basis on ground based radar and the theory of anisotropic (stratified) cascades, they are incompatible with classical turbulence approaches which require at least two isotropic turbulence regimes separated by a meso-scale “gap”. They are also incompatible with classical meteorological phenomenology which identifies morphology with mechanism and breaks up the observed range 4 km–20 000 km into several subranges each dominated by different mechanisms. Finally, since the model specifies the variability over huge ranges, it shows promise for resolving long standing problems in rain measurement from both (typically sparse) rain gage networks and radars.  相似文献   

17.
In the present study, the precipitation near Büyükçekmece Lake, which is one of the important drinking water sources of Istanbul city, was studied during October 2001–July 2002. Seventy-nine bulk precipitation samples were collected at two sampling stations near the Lake (41°2′35″N, 28°35′25″E and 41°5′30″N, 28°37′7″E). The study comprised the determination of H+, Cl, NO3, SO42−, NH4+, Na, K, Mg, Ca, Al, Ba, Fe, Cu and Mn concentrations in bulk deposition rain event samples. The average volume-weighted pH value was found to be 4.81, which points out that the rain is slightly acidic. High sulfate concentrations were observed together with high H+ ion values. Sulfur emissions were the major cause for the observed high hydrogen ion levels. On the basis of factor analysis and correlation matrix analysis, it has been found that in this region, acid neutralization is brought about by calcium rather than the ammonium ion. The varimax rotated factor analysis grouped the variables into four factors, which are crustal, marine and two anthropogenic sources.  相似文献   

18.
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m− 3 and 19.9 to 28.2 μg m− 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

19.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

20.
Wind data from NCEP and hydrographic data obtained during 8–27 March 1992 have been used to compute circulation in the Luzon Strait and the northern South China Sea using three-dimensional diagnostic models with a modified inverse method. Numerical results are as follows: the main Kuroshio is located above 800 m levels. It has two intrusive branches of the Kuroshio in the areas above 400 m. One part intrudes anti-cyclonically northwestward, then flows through the area above 200 m southwest of Taiwan and into the Taiwan Strait. The other part intrudes westward and flows cyclonically in the areas north of the cyclonic eddies, then flows southward through the southern boundary of the region. The net westward volume transport (VT) through Section at 120°15′E between Luzon Island and Taiwan Island is about 3.0 Sv, net northward VT through northern boundaries into the Taiwan Strait is about 1.4 Sv and net southward VT through southern boundaries is about 1.6 Sv, which finally flows into the Karimata and Mindoro Straits. In the areas above 400 m east of 117°15′E, the circulation is mainly dominated by the basin-scale cyclonic gyre, which consists of two cyclonic eddies. However, in the areas below 400 m east of 119°00′E, the circulation is mainly dominated by basin-scale anti-cyclonic gyre. The joint effect of baroclinity and relief and interaction between wind stress and relief are important in different area respectively for the pattern of the depth-averaged flow across contours of fH−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号