首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Coastal exposures of Late Pleistocene sediments deposited after 19 000 yr BP near Dublin, Ireland, provide a window into the infill of a subglacially-cut tunnel valley. Exposures close to the steeply dipping bedrock wall of the valley show boulder gravels within multi-storey U-shaped channels cut and filled by subglacial meltwaters driven by a high hydrostatic head. Gravels are truncated by poorly sorted ice-proximal glaciomarine sediments that record the pumping of large volumes of subglacial debris along the tunnel valley to a tidewater ice sheet margin. The sedimentary succession is dominated by sediment gravity flow facies comprising interbedded diamict and massive, poorly sorted gravel facies interpreted as subaqueous debris flow deposits. Gravel beds show local inverse and normal coarse-tail graded facies recording the restricted development of turbulent flow. Sediment gravity flow deposits fill broad (<2 km) shallow (10 m) and overlapping channels. Penetrative deformation structures (e.g. dykes) are common at the base of channels. The same subglacially-eroded topography and glaciomarine infill stratigraphy can be identified on high resolution seismic profiles across nearly 600 km2 of the western Irish Sea. Tunnel valleys are argued to have been exposed to glaciomarine processes by the rapid retreat of a calving tidewater ice sheet margin in response to marine flooding caused by glacio-isostatic downwarping below the last British Ice Sheet. The facies associations described in this paper comprise an event stratigraphy that may be found on other glaciated continental shelves.  相似文献   

2.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

3.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
We present an 8000‐year history spanning 650 km of ice margin retreat for the largest marine‐terminating ice stream draining the former British–Irish Ice Sheet. Bayesian modelling of the geochronological data shows the ISIS expanded 34.0–25.3 ka, accelerating into the Celtic Sea to reach maximum limits 25.3–24.5 ka before a collapse with rapid marginal retreat to the northern Irish Sea Basin (ISB). This retreat was rapid and driven by climatic warming, sea‐level rise, mega‐tidal amplitudes and reactivation of meridional circulation in the North Atlantic. The retreat, though rapid, is uneven, with the stepped retreat pattern possibly a function of the passage of the ice stream between normal and adverse ice bed gradients and changing ice stream geometry. Initially, wide calving margins and adverse slopes encouraged rapid retreat (~550 m a?1) that slowed (~100 m a?1) at the topographic constriction and bathymetric high between southern Ireland and Wales before rates increased (~200 m a?1) across adverse bed slopes and wider and deeper basin configuration in the northern ISB. These data point to the importance of the ice bed slope and lateral extent in predicting the longer‐term (>1000 a) patterns and rates of ice‐marginal retreat during phases of rapid collapse, which has implications for the modelling of projected rapid retreat of present‐day ice streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

6.
Recent work on the last glaciation of the British Isles has led to an improved understanding of the nature and timing of the retreat of the British?Irish Ice Sheet (BIIS) from its southern maximum (Isles of Scilly), northwards into the Celtic and Irish seas. However, the nature of the deglacial environments across the Celtic Sea shelf, the extent of subaerial exposure and the existence (or otherwise) of a contiguous terrestrial linkage between Britain and Ireland following ice retreat remains ambiguous. Multiproxy research, based on analysis of 12 BGS vibrocores from the Celtic Deep Basin (CDB), seeks to address these issues. CDB cores exhibit a shell‐rich upward fining sequence of Holocene marine sand above an erosional contact cut in laminated muds with infrequent lonestones. Molluscs, in situ Foraminifera and marine diatoms are absent from the basal muds, but rare damaged freshwater diatoms and foraminiferal linings occur. Dinoflagellate cysts and other non‐pollen palynomorphs evidence diverse, environmentally incompatible floras with temperate, boreal and Arctic glaciomarine taxa co‐occurring. Such multiproxy records can be interpreted as representing a retreating ice margin, with reworking of marine sediments into a lacustrine basin. Equally, the same record may be interpreted as recording similar conditions within a semi‐enclosed marine embayment dominated by meltwater export and deposition of reworked microfossils. As assemblages from these cores contrast markedly with proven glaciomarine sequences from outside the CDB, a glaciolacustrine interpretation is favoured for the laminated sequence, truncated by a Late Weichselian transgressive sequence fining upwards into fully marine conditions. Reworked rare intertidal molluscs from immediately above the regional unconformity provide a minimum date c. 13.9 cal. ka BP for commencement of widespread marine erosion. Although suggestive of glaciolacustrine conditions, the exact nature and timing of laminated sediment deposition within the CDB, and the implications this has on (pen)insularity of Ireland following deglaciation, remain elusive.  相似文献   

7.
Late-Pleistocene deposits in north County Mayo were deposited in three main glacigenic environments. 1. Drumlins and basal tills were formed when ice moved from the Irish lowlands and local mountain catchments into Donegal Bay. 2. Gilbert-type deltas accumulated up to 80m I.O.D. on the lowlands and subaqueous moraines formed across minor valleys when marine-based ice grounded inland. 3. A thick drape of fossiliferous glaciomarine mud along the coastal fringe was deposited from meltwater plumes and by ice-rafting immediately outside of these ice limits. The muds contain an Elphidium clavatum-dominated, low-diversity microfauna which is characteristic of cold-water conditions adjacent to glacier termini. Valves of Macoma calcarea from the mud have been 14C dated at 16940 ± 120 and 17300 ± 100 BP. The high-level delta complex was deposited from tidewater glaciers in a peripheral depression adjacent to the drumlin ice limits of north County Mayo. Although the field evidence cannot be used to determine former sea level history with any accuracy, it poses general problems for sea level history and isostatic effects of the last major ice sheet in the west of Ireland. Raised glaciomarine sequences commonly occur in close association with drumlin ice limits elsewhere in Ireland and represent marine transgressions prior to glacial unloading. It is suggested that the magnitudes and patterns of crustal depression are greater and geometrically more complex at the margins of ice sheets in Ireland than hitherto realised.  相似文献   

8.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

9.
In support of their ‘glaciomarine’ model for the deglaciation of the Irish Sea basin, Eyles and McCabe cited the occurrence of distal glaciomarine mud drapes onshore in the Isles of Scilly and North Devon, and of arctic beach‐face gravels and sands around the shores of the Celtic Sea. Glacial and sea‐level data from the southern part of the Irish Sea in the terminal zone of the ice stream and the adjacent continental slope are reviewed here to test this aspect of the model. The suggestion that the glacial sequences of both the Isles of Scilly and Fremington in North Devon are glaciomarine mud drapes is rejected. An actively calving tidewater margin only occurred early in the deglacial sequence close to the terminal zone in the south‐central Celtic Sea. Relative sea‐levels were lower, and therefore glacio‐isostatic depression less, than envisaged in the glaciomarine model. Geochronological, sedimentological and biostratigraphical data indicate that the raised beach sequences around the shores of the Celtic Sea and English Channel were deposited at, or during regression soon after, interglacial eustatic highstands. Evidence for ice‐rafting at a time of high relative sea‐levels is restricted to a phase(s) earlier than the Late Devensian. These data indicate that the raised beach sequences have no bearing on the style of Irish Sea deglaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Lithostratigraphy and chronostratigraphy of samples from 18 deep boreholes in Vendsyssel have resulted in new insight into the Late Weichselian glaciation history of northern Denmark. Prior to the Late Weichselian Main advance c. 23–21 kyr BP, Vendsyssel was part of an ice‐dammed lake where the Ribjerg Formation was deposited c. 27–23 kyr BP. The timing of the Late Weichselian deglaciation is well constrained by the Main advance and the Lateglacial marine inundation c. 18 kyr BP, and thus spans only a few millennia. Rapid deposition of more than 200 m of sediments took place mainly in a highly dynamic proglacial and ice‐marginal environment during the overall ice recession. Mean retreat rates have been estimated as 45–50 m/yr in Vendsyssel with significantly higher retreat rates between periods of standstill and re‐advance. The deglaciation commenced in Vendsyssel c. 20 kyr BP, and the Troldbjerg Formation was deposited c. 20–19 kyr BP in a large ice‐dammed lake in front of the receding ice sheet, partly as glaciolacustrine sediments and partly as rapid and focused sedimentation in prominent ice‐contact fans, which make up the Jyske Ås and Hammer Bakker moraines. In the northern part of central Vendsyssel, at least four generations of north–south orientated tunnel valleys are identified, each generation related to a recessional ice margin. This initial deglaciation was interrupted by a major re‐advance from the east c. 19 kyr BP, which covered most of Vendsyssel. An ice‐dammed lake formed in front of the ice sheet as it retreated towards the east; the Morild Formation was deposited here c. 19–18 kyr BP. Related to this stage of deglaciation, eight ice‐marginal positions have been identified based on the distribution of large tunnel‐valley systems and pronounced recessional moraines. The Morild Formation consists of glaciolacustrine sediments, including the sediment infill of more than 190 m deep tunnel valleys, as well as the sediments in recessional moraines, which were formed as ice‐contact sedimentary ridges, possibly in combination with glaciotectonic deformation. The character of the tunnel‐valley infill sediments was determined by proximity to the ice margin. During episodes of rapid retreat of the ice margin, tunnel valleys were quickly abandoned and filled with fine‐grained sediments in a distal setting. During slow retreat of the ice margin, tunnel valleys were filled in an ice‐proximal environment, and the infill consists of alternating layers of fine‐ to coarse‐grained sediments. At c. 18 kyr BP, Vendsyssel was inundated by the sea, when the Norwegian Channel Ice Stream broke up, and a succession of marine sediments (Vendsyssel Formation) was deposited during a forced regression.  相似文献   

11.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

12.
Here we reconstruct the last advance to maximum limits and retreat of the Irish Sea Glacier (ISG), the only land-terminating ice lobe of the western British Irish Ice Sheet. A series of reverse bedrock slopes rendered proglacial lakes endemic, forming time-transgressive moraine- and bedrock-dammed basins that evolved with ice marginal retreat. Combining, for the first time on glacial sediments, optically stimulated luminescence (OSL) bleaching profiles for cobbles with single grain and small aliquot OSL measurements on sands, has produced a coherent chronology from these heterogeneously bleached samples. This chronology constrains what is globally an early build-up of ice during late Marine Isotope Stage 3 and Greenland Stadial (GS) 5, with ice margins reaching south Lancashire by 30 ± 1.2 ka, followed by a 120-km advance at 28.3 ± 1.4 ka reaching its 26.5 ± 1.1 ka maximum extent during GS-3. Early retreat during GS-3 reflects piracy of ice sources shared with the Irish-Sea Ice Stream (ISIS), starving the ISG. With ISG retreat, an opportunistic readvance of Welsh ice during GS-2 rode over the ISG moraines occupying the space vacated, with ice margins oscillating within a substantial glacial over-deepening. Our geomorphological chronosequence shows a glacial system forced by climate but mediated by piracy of ice sources shared with the ISIS, changing flow regimes and fronting environments.  相似文献   

13.
A late Pleistocene morainal bank is sited in a depocentre to the lee of a major rock ridge, near Greystones, in the western Irish Sea Basin. During deglaciation the ridge provided a pinning point during tidewater wastage northwards. Sedimentation patterns and palaeocurrent data show morainal bank growth by discharge from a single basal efflux located to the east or south-east of the ridge during ice marginal re-equilibration. The four lithofacies associations which are recognized from the western part of the formerly more extensive apron are related largely to variable jet and plume sedimentation. At the base of the 1.6 km long exposure, Lithofacies association 1 (massive mud, muddy diamict and laminated mud) was deposited from turbid plumes, variable ice rafting and traction current activity. Lenticular units of gravels within this mud bank record high energy pulses and sediment fluxes from the efflux jet. Lithofacies association 2 (sands, laminated muds and muddy diamict) is discontinuous and occurs within basins along a marked erosion surface cut in Lithofacies association 1. It is associated with a decrease in jet strength, traction currents and suspension sedimentation. Lithofacies association 3 is a tabular body of interbedded diamicts and gravels which is present along the entire section. It documents the decay phase of re-equilibration as the ice margin disintegrated catastrophically and released large volumes of heterogeneous sediment which was resedimented by quasicontinuous mass flow. Lithofacies association 4 consists of stratified and massive gravels within distributary channels cut into underlying facies and represents the last phase of meltwater activity. Sediment geometries, particularly sedimentary contrasts representing erosion surfaces at a variety of scales and abrupt textural contrasts are attributed to jet switching. Lithofacies association 1 (60%) and Lithofacies association 3 (30%) are the dominant facies. In favourable topographic settings this stratigraphic couplet is a signature for re-equilibrated ice margins in isostatically depressed basins dominated by tidewater fronts, rapid ice flux and high relative sea level. Morainal banks document rapid environmental change and in the Irish Sea Basin they form part of a deglacial event stratigraphy related to unstable tidewater margins and high relative sea level. Deglaciation was therefore controlled primarily by high relative sea level rather than climatic forcing. Facies variations should therefore not be used for stratigraphic correlations in place of direct stratigraphy. This type of situation may be more common than hitherto realized in Late Pleistocene, mid-latitude shelves where most of the preserved stratigraphy is characterized by complex, interbedded sequences formed when isostatic depression exceeded sea-level fall.  相似文献   

14.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

15.
The coastline of County Down includes sites that are pivotal to understanding the history of the last glaciation of the northern Irish Sea Basin in relation to relative sea level and regional glacial readvances. The cliff sections display evidence that has been used to underpin controversial models of glaciomarine sedimentation in isostatically-depressed basins followed by emergent marine and littoral environments. They also provide crucial evidence claimed to constrain millennial-scale ice sheet oscillations associated with uniquely large and rapid sea-level fluctuations. This paper reviews previous work and reports new findings that generally supports the ‘terrestrial’ model of glaciation, involving subglacial accretion and deformation of sediment beneath grounded ice. Deep troughs were incised into the till sheet during a post Late Glacial Maximum draw-down of ice into the Irish Sea Basin. Ice retreat was accompanied by glaciomarine accretion of mud in the troughs during a period of high relative sea level. The trough-fills were over-ridden, compacted, deformed and truncated during a glacial re-advance that is correlated with the Clogher Head Readvance. Grounding-line retreat accompanied by rapid subaqueous ice-proximal sedimentation preserved a widespread subglacial stone pavement. Raised beach gravels cap the sequence. The evidence supports an uninterrupted fall in relative sea level from c. 30?m that is consistent with sea level curves predicted by current glacio-isostatic adjustment modelling. Critical evidence previously cited in support of subaerial dissection of the troughs, and hence rapid fall and rise in relative sea level prior to the deposition of the glaciomarine muds, is not justified.  相似文献   

16.
The BRITICE-CHRONO Project has generated a suite of recently published radiocarbon ages from deglacial sequences offshore in the Celtic and Irish seas and terrestrial cosmogenic nuclide and optically stimulated luminescence ages from adjacent onshore sites. All published data are integrated here with new geochronological data from Wales in a revised Bayesian analysis that enables reconstruction of ice retreat dynamics across the basin. Patterns and changes in the pace of deglaciation are conditioned more by topographic constraints and internal ice dynamics than by external controls. The data indicate a major but rapid and very short-lived extensive thin ice advance of the Irish Sea Ice Stream (ISIS) more than 300 km south of St George's Channel to a marine calving margin at the shelf break at 25.5 ka; this may have been preceded by extensive ice accumulation plugging the constriction of St George's Channel. The release event between 25 and 26 ka is interpreted to have stimulated fast ice streaming and diverted ice to the west in the northern Irish Sea into the main axis of the marine ISIS away from terrestrial ice terminating in the English Midlands, a process initiating ice stagnation and the formation of an extensive dead ice landscape in the Midlands.  相似文献   

17.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

18.
Southwestern Barents Sea sediments contain important information on Lateglacial and Holocene environmental development of the area, i.e. sediment provenance characteristics related to ice‐flow patterns and ice drifting from different regional sectors. In this study, we present investigations of clay, heavy minerals, and ice‐rafted debris from three sediment cores obtained from the SW Barents Sea. The sediments studied are subglacial/glaciomarine to marine in origin. The core sequences were divided into three lithostratigraphical units. The lowest, Unit 3, consists of laminated glaciomarine sediments related to regional deglaciation. The overlying Unit 2 is a diamicton, dominated by mud and oversized clasts. Unit 2 reflects a more ice‐proximal glaciomarine sedimentary environment or even a subglacial depositional environment; its deposition may indicate a glacial re‐advance or stillstand during an overall retreat. The uppermost Unit 1 consists of Holocene marine sediments and current‐reworked sedimentary material with a relatively high carbonate content. A significant proportion of the sedimentary material could be derived from Svalbard and transported by sea ice or icebergs to the Barents Sea during the late deglacial phase. The Fennoscandian sources and local Mesozoic strata from the bottom of the Barents Sea are the likely provenances of sediments deposited during the deglacial and ice re‐advance phases. Bottom currents and sea‐ice transport were the main mechanisms influencing sedimentation during the Holocene. Our results indicate that the provenance areas can be reliably related to certain ice‐flow sectors and transport mechanisms in the deglaciated Barents Sea.  相似文献   

19.
A sequence of Middle Pleistocene (approximately early 'Cromerian Complex') sediments has been subdivided into subglacial, proximal glaciomarine, distal glaciomarine and marine facies. The subglacial facies represents lodgement till deposited during the final stages of ice-sheet advance. At the onset of ice-sheet retreat, streams deposited their load into a shallow-water; glaciomarine environment; gravelly sediments immediately in front of the ice-grounding line and finer material, in suspension, to more distal areas. Ice-rafting, slumping and traction currents were also active within the glaciomarine environment. The lithofacies characteristics of this sequence are consistent with deposition from a grounded tidewater ice-sheet. The glacigenic succession is restricted to the Forth Approaches area, which implies that the ice-sheet had a limited offshore extent.  相似文献   

20.
Large and complete glaciotectonic sequences formed by marine‐terminating glaciers are rarely observed on land, hampering our understanding of the behaviour of such glaciers and the processes operating at their margins. During the Late Weichselian in western Iceland, an actively retreating marine‐terminating glacier resulted in the large‐scale deformation of a sequence of glaciomarine sediments. Due to isostatic rebound since the deglaciation, these formations are now exposed in the coastal cliffs of Belgsholt and Melabakkar‐Ásbakkar in the Melasveit district, and provide a detailed record of past glacier dynamics and the inter‐relationships between glaciotectonic and sedimentary processes at the margin of this marine‐terminating glacier. A comprehensive study of the sedimentology and glaciotectonic architecture of the coastal cliffs reveals a series of subaquatic moraines formed by a glacier advancing from Borgarfjörður to the north of the study area. Analyses of the style of deformation within each of the moraines demonstrate that they were primarily built up by ice‐marginal/proglacial thrusting and folding of marine sediments, as well as deposition and subsequent deformation of ice‐marginal subaquatic fans. The largest of the moraines exposed in the Melabakkar‐Ásbakkar section is over 1.5 km wide and 30 m high and indicates the maximum extent of the Borgarfjörður glacier. Generally, the other moraines in the series become progressively younger towards the north, each designating an advance or stillstand position as the glacier oscillated during its overall northward retreat. During this active retreat, glaciomarine sediments rapidly accumulated in front of the glacier providing material for new moraines. As the glacier finally receded from the area, the depressions between the moraines were infilled by continued glaciomarine sedimentation. This study highlights the dynamics of marine‐terminating glaciers and may have implications for the interpretation of their sedimentological and geomorphological records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号