首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
The existence of three well-defined tongue-shaped zones of swell dominance, termed as ‘swell pools’, in the Pacific, the Atlantic and the Indian Oceans, was reported by Chen et al. (2002) using satellite data. In this paper, the ECMWF Re-analyses wind wave data, including wind speed, significant wave height, averaged wave period and direction, are applied to verify the existence of these swell pools. The swell indices calculated from wave height, wave age and correlation coefficient are used to identify swell events. The wave age swell index can be more appropriately related to physical processes compared to the other two swell indices. Based on the ECMWF data the swell pools in the Pacific and the Atlantic Oceans are confirmed, but the expected swell pool in the Indian Ocean is not pronounced. The seasonal variations of global and hemispherical swell indices are investigated, and the argument that swells in the pools seemed to originate mostly from the winter hemisphere is supported by the seasonal variation of the averaged wave direction. The northward bending of the swell pools in the Pacific and the Atlantic Oceans in summer is not revealed by the ECMWF data. The swell pool in the Indian Ocean and the summer northward bending of the swell pools in the Pacific and the Atlantic Oceans need to be further verified by other datasets.  相似文献   

3.
This study has examined the temporal variation in monthly, seasonal annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NAO) and Southern Oscillation(SO) Indices on seasonal annual precipitation. The Mann–Kendall non-parametric test is applied for trend detection and the Pettitt–Mann–Whitney test is used to detect possible shift. Maximum entropy spectral analysis is applied to find the periodicity in annual seasonal precipitation. The study shows a non-significant decreasing trend in annual precipitation over WHR for the period 1857-2006. However, in seasonal precipitation, a significant decreasing trend is observed in monsoon and a significant increasing trend in post-monsoon season during the same period. The significant decrease in monsoon precipitation may be due to weakening of its teleconnection with NAO as well as SO Indices mainly during last three decades. It is observed that the probable change of year in annual monsoon precipitation over WHR is 1979. The study also shows significant periodicities of 2.3-2.9 years and of 3.9-4.7 years in annual seasonal precipitation over WHR.  相似文献   

4.
Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.  相似文献   

5.
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.  相似文献   

6.
????????????????GNSS??????????????о???????????1???????????????????仯?????????????仯????????仯???????仯?й??2???????????????????????????????????????????????仯????????С??3?????3.5 m????????????????????????????????????????  相似文献   

7.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

8.
Wave parameters, such as wave height and wave period, are important for human activities, such as navigation, ocean engineering and sediment transport, etc. In this study, wave data from six buoys around Chinese waters, are used to assess the quality of wave height and wave period in the ERA5 reanalysis of the European Centre for Medium-Range Weather Forecasts. Annual hourly data with temporal resolution are used. The difference between the significant wave height(SWH) of ERA 5 and that of the buoy varies from-0.35 m to 0.30 m for the three shallow locations;for the three deep locations, the variation ranges from-0.09 m to 0.09 m. The ERA5 SWH data show positive biases, indicating an overall overestimation for all locations, except for E2 and S1 where underestimation is observed. During the tropical cyclone period, a large(about 32%) underestimation of the maximum SWH in the ERA5 data is observed. Hence, the ERA5 SWH data cannot be used for design applications without site-specific validation. The difference between the annual wave period from ERA5 and the mean wave period from the buoys varies from-1.31 s to 0.4 s. Inter-comparisons suggest that the ERA5 dataset is consistent with the annual mean SWH. However, for the average period, the performance is not good, and half of the correlation coefficients in the four points are less 50%. Overall, the deep water area simulation effect is better than that in the shallow water.  相似文献   

9.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we  相似文献   

10.
Based on the analysis of Levitus data, the climatic states of the warm pool in the Indian Ocean (WPIO) and in the Pacific Ocean (WPPO) are studied. it is found that WPIO has a relatively smaller area, a shallower bottom and a slightly lower seawater temperature than those of WPPO. The horizontal area at different depths, volumes, central positions, and bottom depths of both WPIO and WPPO show quite apparent signals of seasonal variation. The maximum amplitude of WPIO surface area’s seasonal variation is 58% larger over the annual mean value. WPIO’s maximum volume variation amplitude is 66% larger over the annual mean value. The maximum variation amplitudes of the surface area and volume of WPPO are 20.9% and 20.6% larger over the annual mean value respectively. WPIO and WPPO show different temporal and spatial characteristics mainly due to the different wind fields and restriction of ocean basin geometry. For instance, seasonal northern displacement of WPIO is, to some extent, constrained by the basin of the Indian Ocean, while WPPO moves relatively freely in the longitudinal direction. The influence of WPIO and WPPO over the atmospheric motion must be quite different.  相似文献   

11.
In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms~(-1) and 1.73 m and 8.24 ms~(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.  相似文献   

12.
Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.  相似文献   

13.
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.  相似文献   

14.
Wave fi elds of the South China Sea(SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind fi eld datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon(April–September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon(December–March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height H s in SCS shows that in spring, H s ≥1 m in the central SCS region and is less than 1 m in other areas. In summer, H s is higher than in spring. During September–November, infl uenced by tropical cyclones, H s is mostly higher than 1 m. East of Hainan Island, H s 2 m. In winter, H s reaches its maximum value infl uenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.  相似文献   

15.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   

16.
Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.  相似文献   

17.
近50年中国地表净辐射的时空变化特征分析   总被引:1,自引:0,他引:1  
基于GIS空间分析技术与Mann-Kendall趋势分析方法,对中国陆地区域699个气象站点1961-2010年逐年、季平均地表净辐射进行时空变化特征分析,结果表明:(1)参数拟合后的FAO Penman修正式对模拟站点逐日地表净辐射的总体精度较高,均方根误差为27.9W.m-2,相关系数为0.85,平均相对误差为0.13;(2)全国近50年站点平均地表净辐射在年、季均呈现出较明显的下降过程,年均降幅为0.74W.m-2.10a-1,不同季节的下降幅度存在差异,夏季降幅最大;(3)逐站点分析显示全国大部分站点(59.8%)年均地表净辐射呈显著下降趋势(0.05),东部趋势变化比西部明显,夏季在地表净辐射年际变化中的贡献最大,华北、华中、华南地区的站点在春夏秋季均呈显著下降趋势。  相似文献   

18.
The statistical characterization of sea conditions in the South China Sea(SCS) was investigated by analyzing a 30-year(1976–2005) numerically simulated daily wave height and wind speed data. The monthly variation of these parameters shows that wave height and wind speed have minimum values of 0.54 m and 4.15 ms~(-1), respectively in May and peak values of 2.04 m and 8.12 ms~(-1), respectively in December. Statistical analysis of the daily wave height and wind speed and the subsequent characterization of the annual, seasonal and monthly mean sea state based on these parameters were also done. Results showed that, in general, the slight sea state prevails in the SCS and has nearly the highest occurrence in all seasons and months. The moderate sea condition prevails in the winter months of December and January while the smooth(wavelets) sea state prevails in May. Furthermore, spatial variation of sea states showed that calm and smooth sea conditions have high occurrences(25%–80%) in the southern SCS. The slight sea condition shows the largest occurrence(25%–55%) over most parts of the SCS. High occurrences(8%–17%) of the rough and very rough seas distribute over some regions in the central SCS. Sea states from high to phenomenal conditions show rare occurrence(12%) in the northern SCS. The calm(glassy) sea condition shows no occurrence in the SCS.  相似文献   

19.
Blocking is a large-sclae, mid-latitude atmospheric anticyclone that splits the westerly into two jets and has a profound effect on local and regional climates. This study examined the seasonal, interannual, and decadal variability of the Atlantic and Pacific blocking anticyclones in the Northern Hemisphere based on the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data between 1958 and 1999. The preferred blocking region during these forty-two years was located over the Atlantic. Most blocking anticyclones over the Atlantic occurred in spring, while most of those over the Pacific occurred in winter. Similar two-to four-year and eleven-year oscillations were found for both the Atlantic and Pacific blocks by using wavelet analysis. The dominant mode for the Pacific blocks is decadal variation, while for the Atlantic blocks the predominant one is interannual variation with a period of about three years. The frequencies of the Pacific and Atlantic blocks varied almost in phase on interannual time scales except during the period of 1965–1977, and frequencies were out of phase on decadal time scale throughout the forty-two years.  相似文献   

20.
1 Introduction Most of the solar radiation that ecosystem seizes is con- sumed on latent, sensible and soil heat flux. Among them, latent heat flux shares the biggest part (Gutierrez and Meizer, 1994; Ham et al., 1991; Rachidi et al., 1993). The radiation budget and the energy balance are crucial to water conversion and effective water utilization. Also, they are important parts of research of water-saving ag- riculture (Mo et al., 1997). At present, the researches on radiation budget and e…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号