首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shales of the Qiongzhusi Formation and Wufeng–Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann’s equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.  相似文献   

2.
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.  相似文献   

3.
龙马溪组页岩微观结构、地震岩石物理特征与建模   总被引:9,自引:3,他引:6       下载免费PDF全文
龙马溪组页岩是目前国内页岩气勘探的主要层位之一.由于岩石物理实验结果具有区域性,龙马溪组页岩的岩石特征与其地震弹性性质的响应规律需要开展相关的实验和理论研究工作予以明确.本研究基于系统的微观结构观察(扫描电镜和CT成像技术)和岩石物理实验来分析龙马溪组页岩样品地震弹性性质的变化规律,并依据微观结构特征建立相应的地震岩石物理表征模型.研究结果表明,石英含量对龙马溪组页岩的孔隙度以及有机碳(TOC)含量具有一定的控制作用,TOC和黄铁矿主要赋存于孔隙中;岩石骨架组成亦受控于石英或粘土含量,在石英含量大于40%(对应粘土含量小于30%)时,以石英、粘土共同作为岩石骨架,而粘土含量大于30%时,则以粘土作为岩石的骨架.因此,岩石骨架组成矿物、TOC含量、孔隙度共同制约龙马溪组页岩的地震弹性性质,富有机质储层岩石通常表现出低泊松比、低阻抗和低杨氏模量的特征,但由于支撑矿物的转换,某些富有机质页岩亦可表现为高阻抗特征.粘土矿物的定向排列仍然是造成页岩样品表现出各向异性的主要原因,各向异性参数与粘土含量具有指数关系.基于龙马溪组页岩的岩性特征及微观结构特征,可以利用自洽模型(SCA)、微分等效模量模型(DEM)和Backus平均模型的有效组合较为准确地建立龙马溪组页岩的地震岩石物理模型,实验结果和测井数据验证了模型的准确性.研究结果可为龙马溪组页岩气储层的测井解释和地震"甜点"预测提供依据.  相似文献   

4.
Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.  相似文献   

5.
Shales play an important role in many engineering applications such as nuclear waste, CO2 storage and oil or gas production. Shales are often utilized as an impermeable seal or an unconventional reservoir. For both situations, shales are often studied using seismic waves. Elastic properties of shales strongly depend on their hydration, which can lead to substantial structural changes. Thus, in order to explore shaly formations with seismic methods, it is necessary to understand the dependency of shale elastic properties on variations in hydration. In this work, we investigate structural changes in Opalinus shale at different hydration states using laboratory measurements and X-ray micro-computed tomography. We show that the shale swells with hydration and shrinks with drying with no visible damage. The pore space of the shale deforms, exhibiting a reduction in the total porosity with drying and an increase in the total porosity with hydration. We study the elastic properties of the shale at different hydration states using ultrasonic velocities measurements. The elastic moduli of the shale show substantial changes with variations in hydration, which cannot be explained with a single driving mechanism. We suggest that changes of the elastic moduli with variations in hydration are driven by multiple competing factors: (1) variations in total porosity, (2) substitution of pore-filling fluid, (3) change in stiffness of contacts between clay particles and (4) chemical hardening/softening of clay particles. We qualitatively and quantitatively analyse and discuss the influence of each of these factors on the elastic moduli. We conclude that depending on the microstructure and composition of a particular shale, some of the factors dominate over the others, resulting in different dependencies of the elastic moduli on hydration.  相似文献   

6.
五峰-龙马溪组页岩是目前国内页岩气勘探的首选层位,而其地震岩石物理特征是利用地震方法进行"甜点"预测的重要基础之一,但对五峰-龙马溪组页岩地震弹性特征变化规律的研究并未考虑沉积、成岩过程的影响,致使相应的规律性认识缺乏地质意义.在对五峰-龙马溪组页岩样品系统声学测量基础上,分析了页岩样品地震弹性性质的变化规律.利用X射线衍射分析、扫描电镜(SEM)、阴极发光(CL)与能谱分析确定了五峰-龙马溪组页岩在不同沉积环境下的成岩过程,并讨论了成岩过程与地震弹性性质变化规律的因果关系.研究结果表明,页岩中有机质(TOC)受高热演化程度的影响,其密度通常高于1.4 g·cm-3,并接近于有机碳密度上限1.6 g·cm-3(石墨密度).五峰-龙马溪组页岩地震弹性性质变化规律整体受沉积环境控制,沉积环境的差异形成不同的成岩过程,致使地震弹性特征也表现出不同的变化规律.表现在五峰-龙马溪页岩样品动态岩石物理特征主要受岩石结构控制(支撑颗粒弹性性质),而孔隙度、TOC含量以及孔隙形状则为对地震弹性特征影响的次一级因素.五峰-龙马溪组页岩上段为浅水陆棚相,机械压实与化学压实(硅质胶结)为先后两个过程,造成样品表现出高的速度-孔隙度变化率、高速度比(泊松比)、高各向异性以及低TOC含量的特征.五峰-龙马溪组页岩下段为深水陆棚相,机械压实过程中同时伴有生物成因的硅质胶结,造成岩石样品表现出较高TOC含量与孔隙度、各向异性较弱以及较小的速度-孔隙度变化率.研究结果可为五峰-龙马溪页气储层的测井解释和地震"甜点"预测提供依据.  相似文献   

7.
8.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   

9.
烃源岩的定量地震刻画对于勘探开发区块的优选、盆地油气资源量的估算都具有重要意义.陆相沉积环境下的浅湖或半深湖相的烃源岩横向变化快,其空间展布需要依靠钻井约束下的反射地震进行刻画,但是其地震弹性特征与岩性和有机质含量的映射关系呈现高度非线性化,因而很难利用传统基于地震岩石物理模型驱动的烃源岩地震预测方法进行有效刻画.本文以低勘探区的东海盆地长江坳陷为例,提出了一种在数据驱动的机器学习框架下,综合利用地质约束、钻井录井、测井、地球化学和叠前地震数据进行烃源岩的定量地震刻画的工作流程.其核心思想是利用随机森林集成学习算法对小样本数据表现优异的特征,以井位处的测井弹性数据(纵波速度和密度)、岩性、地球化学标定的总有机碳含量(TOC)为样本标签数据,在地质导向约束下通过随机森林算法生成学习网络,并将该网络与叠前地震反演结果相结合,采取先预测泥岩再预测总有机碳含量的“两步走”策略,完成对烃源岩空间分布及其非均质性的定量地震刻画,并对预测结果的不确定性进行评价.测试结果显示,随机森林算法相较于其他的机器学习算法能够更准确的识别陆相沉积地层的泥岩,并比传统的利用阻抗转化方法获得更可靠的总有机碳含量预测结果.  相似文献   

10.
Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales’ pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks – the nano- and microscale pores – using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods are tested on two shale samples for which full 3D samples are available. The quantitative accuracy of the models is demonstrated by computing their morphological and flow properties and comparing them with those of the actual 3D images. The success of the method hinges upon the use of very different low- and high-resolution images.  相似文献   

11.
Gas shales with a high gas content were drilled in the Lower Cambrian Lujiaping Formation in the northeastern Sichuan Basin,close to the Chengkou Fault in the Dabashan arc-like thrust fold belt.The equivalent vitrinite reflectance values of organic matters are over 4.0%Ro.The pore structures of the shales were investigated based on microscopy,field emission scanning electron microscopy(FESEM)observations,and low temperature N2 adsorption analysis.The study suggests that cleavages,comprising clay minerals mixed up with organic matter and other insoluble residues,were developed in the rock layers.The clay minerals are directionally arranged,displaying a mylonitized texture.Abundant nanometer-size organic matter and clay mineral particles are well mixed in the cleavage domains,which developed the mylonitized pore system that consists of nanometer-size intergranular pore spaces,aggregate pore spaces in clay mineral flakes and pore network.This mylonitized pore system has high specific surface area,high methane adsorption capacity,and high capillary pressure,which collectively contributes to the preservation of shale gas in such a complex tectonic area.The discovery of the mylonitized pore structure in organic-rich shales may reveal a new mechanism of shale gas enrichment in complex tectonic areas with over-mature organic matter in the northeastern part of Sichuan Basin.  相似文献   

12.
页岩中的TOC(Total Organic Carbon,总有机碳)含量,对页岩的有效弹性模量以及与之相关的弹性波速度(P波和S波)有重要影响,建立弹性模量与TOC含量关系是页岩气甜点预测的重要手段之一.CS和SM两种固体置换理论主要针对孔隙度较大的砂岩,能否适用于孔隙度低、孔隙形态复杂和非均质性强的页岩目前尚未深入研究.鉴于目前已知的富有机质页岩的TOC赋存形态与裂缝以及孔隙形态类似,有关TOC含量对岩石弹性模量的影响可视为孔隙物质充填问题来研究.本文利用数字岩心技术,构造同一数字岩心不同TOC含量的样本群,基于CS和SM两种固体替换理论模型,通过有限元(FEM)数值模拟交叉验证,详细研究了两种固体替换方程对页岩的适用性和TOC含量对页岩弹性性质的影响.研究表明,由于实际岩心孔隙及TOC分布的非均质性,CS替换方程弹性模量预测值与FEM模拟结果存在差异,而SM替换方程预测值与FEM模拟结果基本一致,两种方程的预测差异揭示页岩非均质强度,利用SM替换方程中的参数α_1,α_2,β_1和β_2可详细分析实际岩心孔隙及TOC分布的非均质特征.  相似文献   

13.
Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. The world's most important conventional oil and gas reservoirs have their corresponding source rocks in shale. Furthermore, shale oil and shale gas are the most rapidly expanding trends in unconventional oil and gas. Shales are notorious for their strong elastic anisotropy, i.e., so‐called vertical transverse isotropy. This vertical transverse isotropy, characterised by a vertical axis of invariance, is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie, and amplitude versus offset analysis. A rather classical paradigm makes a clear link between compaction in shales and the alignment of the clay platelets (main constituent of shales). This would imply increasing anisotropy strength with increasing compaction. Our main purpose is to check this prediction on two large databases in shaly formations (more than 800 samples from depths of 0–6 km) by extracting the major trends in the relation between seismic anisotropy and compaction. The statistical analysis of the database shows that the simultaneous increase in density and velocity, a classical compaction signature, is quite weakly correlated with the anisotropy strength. As a consequence, compaction can be excluded as a major cause of seismic anisotropy, at least in shaly formations. Also, the alignment of the clay platelets can explain most of the anisotropy measurements of both databases. Finally, a method for estimating the orientation distribution function of the clay platelets from the measurement of the anisotropy parameters is suggested.  相似文献   

14.
The elastic properties and anisotropy of shales are strongly influenced by the degree of alignment of the grain scale texture. In general, an orientation distribution function (ODF) can be used to describe this alignment, which, in practice, can be characterized by two Legendre coefficients. We discuss various statistical ODFs that define the alignment by spreading from a mean value; in particular, the Gaussian, Fisher and Bingham distributions. We compare the statistical models with an ODF resulting from pure vertical compaction (no shear strain) of a sediment. The compaction ODF may be used to estimate how the elastic properties and anisotropy evolve due to burial of clayey sediments. Our study shows that the three statistical ODFs produce almost identical correspondence between the two Legendre coefficients as a function of the spreading parameter, so that the spreading parameter of one ODF can be converted to the spreading parameter of another ODF. In most cases it is then sufficient to apply the spreading parameter for the ODF instead of the two Legendre coefficients. The effect of compaction on the ODF gives a slightly different correspondence between the two Legendre coefficients from that for the other models. In principle, this opens up the possibility of distinguishing anisotropy effects due to compaction from those due to other processes. We also study reflection amplitudes versus angle of incidence (AVA) for all wave modes, where shales having various ODFs overlie an isotropic medium. The AVA responses are modelled using both exact and approximation formulae, and their intercepts and gradients are compared. The modelling shows that the S‐wave velocity is sensitive to any perturbation in the spreading parameter, while the P‐wave velocity becomes increasingly sensitive to a perturbation of a less ordered system. Similar observations are found for the AVA of the P‐P and P‐SV waves. Modelling indicates that a combined use of the amplitude versus offset of P‐P and P‐SV reflected waves may reveal certain grain scale alignment properties of shale‐like rocks.  相似文献   

15.
Study of Late Cretaceous lacustrine sedimentary strata in the eastern Songliao Basin, China revealed that the paleoclimate was relatively arid and hot during sedimentation of the upper Santonian of the Yaojia Formation, but became relatively humid and warm during deposition of the lower Campanian Nenjiang Formation. The upper Yaojia Formation was deposited in a freshwater lake environment, while the lower Nenjiang Formation was deposited in a slightly brackish to brackish environment. The average total organic carbon content in the upper Yaojia Formation is 0.15%, while the hydrogen index is 36 mgHC/gTOC, implying poor source rock for oil generation and the organic matter comprised of a mixture of woody and herbaceous organic matter. In contrast, the hydrogen index of oil shale and black shale of the lower Nenjiang Formation is 619 mgHC/gTOC, and total organic carbon content on average is 3.37%, indicating a mixed algae and herbaceous source of kerogen and an increase in aquatic bioproductivity. The black shale and oil shale have low Pristane/Phytane and C29 5α,14α,17α(H) ? stigmastane 20R/(20R + 20S) ratios, with maximum concentration of n‐alkanes at n‐C23, implying an anoxic depositional environment with algae, bacteria and higher plants providing most of the organic matter. Relatively abundant gammacerane and a higher Sr/Ba ratio in the oil shales suggest the presence of brackish water and development of salinity stratification in the lake. During sedimentation of the upper Yaojia through the lower Nenjiang Formations, the level of Songliao lake increased and a deep‐lake environment was formed with bottom waters being oxygen depleted. Concomitantly, as the lake deepened bottom conditions were changing from oxic to anoxic, and the input of organic matter changed from predominantly higher plants to a mixture of bacteria, algae and higher plants providing favorable conditions for oil source rock accumulation.  相似文献   

16.
Hydraulic fracturing reservoir reconstruction technology is crucial in the development of shale gas exploitation techniques.Large quantities of high-pressure fluids injected into shale reservoirs significantly alter compressional(P)and shear(S)wave velocities,rock mechanical parameters,and anisotropic characteristics.In this study,differentiated hydraulic fracturing petrophysical experiments were carried out on Longmaxi Formation shale under pseudo-triaxial stress loading conditions.The effects of stress loading methods,and water-rock physical and chemical reactions on P-and S-wave velocities and rock mechanical parameters were compared.The experimental results showed that isotropic stress loading may increase the P-and Swave velocities and Young’s modulus of dry shale kldnsample.Furthermore,it may lead to a weakening of the corresponding anisotropy.In contrast,differential stress loading was able to improve the anisotropy of Young’s modulus and accelerate the decrease in the compressive strength of shale in the vertical bedding direction.The water-rock physical and chemical reactions prompted by hydraulic fracturing was found to"soften"shale samples and reduce Young’s modulus.The influence of this"soften"effect on the compressional and shear wave velocities of shale was negligible,whilst there was a significant decrease in the anisotropy characteristics of Thomsen parameters,Young’s modulus,and Poisson’s ratio.The negative linear relationship between the Poisson’s ratios of the shale samples was also observed to lose sensitivity to stress loading,as a result of the"soften"effect of fracturing fluid on shale.The results of this study provide a reliable reference point and data support for future research on the mechanical properties of Longmaxi shale rocks.  相似文献   

17.
Based on analytic relations, we compute the reflection and transmission responses of a periodically layered medium with a stack of elastic shales and partially saturated sands. The sand layers are considered anelastic (using patchy saturation theory) or elastic (with effective velocity). Using the patchy saturation theory, we introduce a velocity dispersion due to mesoscale attenuation in the sand layer. This intrinsic anelasticity is creating frequency dependence, which is added to the one coming from the layering (macroscale). We choose several configurations of the periodically layered medium to enhance more or less the effect of anelasticity. The worst case to see the effect of intrinsic anelasticity is obtained with low dispersion in the sand layer, strong contrast between shales and sands, and a low value of the net‐to‐gross ratio (sand proportion divided by the sand + shale proportion), whereas the best case is constituted by high dispersion, weak contrast, and high net‐to‐gross ratio. We then compare the results to show which dispersion effect is dominating in reflection and transmission responses. In frequency domain, the influence of the intrinsic anelasticity is not negligible compared with the layering effect. Even if the main resonance patterns are the same, the resonance peaks for anelastic cases are shifted towards high frequencies and have a slightly lower amplitude than for elastic cases. These observations are more emphasized when we combine all effects and when the net‐to‐gross ratio increases, whereas the differences between anelastic and elastic results are less affected by the level of intrinsic dispersion and by the contrast between the layers. In the time domain, the amplitude of the responses is significantly lower when we consider intrinsic anelastic layers. Even if the phase response has the same features for elastic and anelastic cases, the anelastic model responses are clearly more attenuated than the elastic ones. We conclude that the frequency dependence due to the layering is not always dominating the responses. The frequency dependence coming from intrinsic visco‐elastic phenomena affects the amplitude of the responses in the frequency and time domains. Considering intrinsic attenuation and velocity dispersion of some layers should be analyzed while looking at seismic and log data in thin layered reservoirs.  相似文献   

18.
The Eagle Ford Shale of Central and South Texas is currently of great interest for oil and gas exploration and production. Laboratory studies show that the Eagle Ford Shale is anisotropic, with a correlation between anisotropy and total organic carbon. Organic materials are usually more compliant than other minerals present in organic‐rich shales, and their shapes and distribution are usually anisotropic. This makes organic materials an important source of anisotropy in organic‐rich shales. Neglecting shale anisotropy may lead to incorrect estimates of rock and fluid properties derived from inversion of amplitude versus offset seismic data. Organic materials have a significant effect on the PP and PS reflection amplitudes from the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface. The higher kerogen content of the Lower Eagle Ford compared with that of the Upper Eagle Ford leads to a negative PP reflection amplitude that dims with offset, whereas the PS reflection coefficient increases in magnitude with increasing offset. The PP and PS reflection coefficients at the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface all increase in magnitude with increasing volume fraction of kerogen.  相似文献   

19.
页岩岩石物理建模旨在建立页岩矿物组分、微观结构、流体填充与岩石弹性参数的关系.对四川盆地龙马溪组页岩进行岩石物理建模研究,针对页岩黏土含量高、层间微裂缝发育等特点,利用Backus平均理论描述页岩黏土矿物弹性参数,利用Chapman理论计算与水平微裂缝有关的VTI各向异性,并利用Bond变换考虑地层倾角的影响.提出以黏土矿物纵、横波速度和孔隙纵横比为拟合参数进行岩石物理反演的方法,并引入贝叶斯框架减小反演的多解性.由已知的黏土矿物纵、横波速度和孔隙纵横比作为先验信息,并以测井纵、横波速度作为约束条件建立反演的目标函数,同时利用粒子群算法进行最优化搜索.计算结果表明,基于先验约束和粒子群算法的反演方法能够较准确地反演黏土矿物的弹性参数、孔隙形态参数以及裂缝密度等参数.计算得到的黏土纵、横波速度较高,并且在一定范围内变化,这可能与龙马溪组页岩的黏土矿物组分中具有较高弹性模量的伊利石含量较高有关,同时也与黏土定向排列等微观物性特征有关.反演得到的裂缝密度与纵波各向异性参数ε呈明显的正相关,而与横波各向异性参数γ相关性较小.另外,页岩各向异性参数与黏土垂向的纵横波速度有较强的相关性.  相似文献   

20.
基于时频电磁法的富有机质页岩层系勘探研究   总被引:2,自引:0,他引:2       下载免费PDF全文
我国地质条件复杂、多样,能否充分发挥出非地震勘探技术成本低、效率高的技术优势,检验电法勘探技术在页岩气勘探中的有效性,是当前在页岩气勘探起步阶段亟待解决的重要问题之一.本文介绍了在研究和总结含气页岩密度、极化率、电阻率等岩石物理特征基础上,在四川盆地南部筠连地区开展的物性调查、时频电磁法勘探试验工作.勘探研究结果表明,本地区分布的富有机质页岩层系-志留系龙马溪组(S1l)具备开展电法勘探工作的物性条件,时频电磁法具有勘探富有机质页岩层系的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号