首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

3.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

4.
The relationships amongst modern pollen assemblages, vegetation, climate and human activity are the basis for reconstructing palaeoenvironmental changes using pollen records. It is important to determine these relationships at regional scales due to the development of vegetation under different climatic conditions and human activities. In this paper, we report on an analysis of modern pollen assemblages of 31 surface lake samples from 31 lakes (one sample per lake) on the southwestern Tibetan Plateau where the knowledge of modern pollen and their relationships with vegetation, climate and human activities is insufficient. The region includes five vegetation zones: sub‐alpine shrub steppe, alpine steppe, alpine meadow and steppe ecotone, mountain desert and alpine desert. The lakes span a wide range of mean annual precipitation (50–500 mm) and mean annual temperature (?8 to 6 °C). Modern pollen assemblages from our samples mainly consist of herb taxa (Artemisia, Cyperaceae, Poaceae, Chenopodiaceae, etc.) and some tree taxa (Pinus, Fagaceae, Alnus, etc.). The results indicate that modern pollen assemblages are able to reflect the main vegetation distribution. Redundancy analysis for the main pollen types and environmental variables shows that precipitation is the leading factor that influences the pollen distribution in the study area with the first axis capturing 13.7% of the variance in the pollen data set. The Artemisia/Chenopodiaceae ratio is valid for separating the desert component (<2) from the steppe and other vegetation zones (>2) but is unable to distinguish moisture variations. The Artemisia/Cyperaceae ratio is able to identify meadows (<1) and steppes (>1) and can be used as a moisture index on the southwestern Tibetan Plateau. Our results show that an appropriate range is needed for a modern pollen data set in order to perform pollen‐based quantitative climate reconstructions in one region. It is essential to perform modern studies before using pollen ratios to reconstruct palaeovegetation and palaeoclimate at a regional scale.  相似文献   

5.
Haploxylon pine(s) and Artemisia dominated the initial vegetation in front of the receding Okanogan Lobe until ca. 10,000 yr B.P., as revealed by two pollen records in north-central Washington. After 10,000 yr B.P. the macroclimate became warmer throughout the Okanogan drainage as diploxylon pines and Artemisia increased. The Mount Mazama eruption at ca. 6700 yr B.P. is recorded as two stratigraphically separate and petrographically distinct tephra units at Bonaparte Meadows. While there are apparent short-term changes in the vegetation coincident with the ashfall(s), Artemisia continues to dominate the Okanogan Valley until ca. 5000 yr B.P. By 4700 yr B.P. the modern vegetation, dominated by Pseudotsuga menziesii, had become established around Bonaparte Meadows.  相似文献   

6.
Pollen data from two sections from a coastal cliff on the western Yamal Peninsula (69°43.27′N, 66°48.80′E) document the environmental history during the Karginsky (Middle Weichselian) interstadial. Low pollen concentrations, high amounts of redeposited pollen, and relatively high presence of Artemisia pollen characterize sediments deposited at about 33,000 14C yr B.P. Grass-sedge plant associations with few other herbs occupied the area during the late Karginsky interstadial. Artemisia pollen may indicate rather xerophytic vegetation and disturbed soils in the area. The dominance of redeposited pollen reflects scarce (disturbed) vegetation cover and low pollen productivity. The climate was relatively cold and dry. Sediments dated to 32,400 14C yr B.P. contain fewer redeposited pollen and concentration of non-redeposited pollen is significantly higher. Pollen contents indicate the dominance of tundra-like grass-sedge vegetation and more humid conditions. Pollen records dated between 30,100 and 25,100 14C yr B.P. also reflect scarce tundra-like vegetation during this interval. The presence of Betula nana and Salix pollen may reflect limited presence of shrub communities. This suggests that the climate was somewhat warmer during the latter part of the interstadial. However, generally the pollen records show that harsh environmental conditions prevailed on the Yamal Peninsula during the Karginsky interstadial.  相似文献   

7.
Hager Pond, a mire in northern Idaho, reveals at least five pollen zones since sediments formed after the last recession of continental ice (>9500 yr BP). Zone I (>9500-8300 yr BP) consists mainly of diploxylon pine, plus low percentages of Abies, Artemisia, and Picea. SEM examination of conifer pollen at selected levels in the zone reveals that Pinus albicaulis, P. monticola, and P. contorta are present in unknown proportions. The zone resembles modern pollen spectra from the Abies lasiocarpa-P. albicaulis association found locally today only at high elevation. Presence of whitebark pine indicates a cooler, moister climate than at present, but one which was rapidly replaced in Zone II (8300-7600 yr BP) by warmer, drier conditions as inferred by prominence of grass with diploxylon pine. Zone III (7600-3000 yr BP) was probably dominated by Pseudotsuga menziesii, plus diploxylon pine and prominent Artemisia and denotes a change in vegetation but continuation of the warmer drier conditions. Beginning at approximately 3000 yr BP Picea engelmannii, Abies lasiocarpa, and/or A. grandis and diploxylon pine were dominants and the inferred climate became cooler and moister concomitant with Neoglaciation. The modern climatic climax (Zone V), with Tsuga heterophylla as dominant, has emerged in approximately the last 1500 yr.  相似文献   

8.
Kylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin.  相似文献   

9.
The Qaidam Basin is one of the most sensitive areas to climate change in China, owing to its unique geographical position and ecological condition. In this study, 32 surface‐soil pollen samples were collected to reveal the relationship between modern pollen assemblages, vegetation and precipitation in the eastern region of the Qaidam Basin. The results show that Chenopodiaceae (3.8–87%, average 48%), Artemisia (1.7–64.2%, average 17.5%) and Ephedra (0–90%, average 16.3%) are the dominant pollen types in all samples, and that different pollen assemblages correspond to different vegetation types. DCA and CCA of major pollen types demonstrate that precipitation is an important factor in the control of the distribution of vegetation in the study area. The content and concentration of the three major pollen types (Artemisia, Chenopodiaceae and Ephedra) change with the mean annual precipitation, and the optimum mean annual precipitation for Ephedra, Chenopodiaceae and Artemisia is <80, 80–200 and >160 mm, respectively. Correlation analysis between the variation in grain size of the three major pollen types and the main environmental variables shows that the grain size of the three pollen types is positively correlated with precipitation in the Qaidam Basin. The results confirm that precipitation is the most important environmental factor in the Qaidam Basin, and that it has an important effect on pollen grain size in the study area.  相似文献   

10.
In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high‐resolution pollen record from El Tiro Pass (2810 m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127 cm long core spanning the last ca. 21 000 cal. yr BP, indicate that grass‐paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass‐paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11 200 to 8900 cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300 cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300 cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000 cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
《Quaternary Science Reviews》2007,26(17-18):2167-2184
The northwestern Great Basin lies in the transition zone between the mesic Pacific Northwest and xeric intermountain West. The paleoenvironmental history based on pollen, macroscopic charcoal, and plant macrofossils from three sites in the northwestern Great Basin was examined to understand the relationships among the modern vegetation, fire disturbance and climate. The vegetation history suggests that steppe and open forest communities were present at high elevations from ca 11,000 to 7000 cal yr BP, and were replaced by forests composed of white fir, western white pine, and whitebark pine in the late Holocene. Over the last 11,000 years, fires were more frequent in mid-elevation forests (10–25 fire episodes/1000 years) and rare in high-elevation forests (2–5 fire episodes/1000 years). Applying modern pollen–climate relationships to the fossil pollen spectra provided a means to interpret past climate changes in this region. In the past 9000 years summer temperatures decreased from 1 to 4 °C, and annual precipitation has increased 7–15%. These results indicate that the millennial-scale climate forcing driving vegetation changes can be quantified within the intermountain West in general and northwestern Great Basin in particular. In addition, fire can be considered an important component of these ecosystems, but it does not appear to be a forcing mechanism for vegetation change at the resolution of these records.  相似文献   

12.
Paleoenvironmental records from a number of permafrost sections and lacustrine cores from the Laptev Sea region dated by several methods (14C-AMS, TL, IRSL, OSL and 230Th/U) were analyzed for pollen and palynomorphs. The records reveal the environmental history for the last ca 200 kyr. For interglacial pollen spectra, quantitative temperature values were estimated using the best modern analogue method. Sparse grass-sedge vegetation indicating arctic desert environmental conditions existed prior to 200 kyr ago. Dense, wet grass-sedge tundra habitats dominated during an interstadial ca 200–190 kyr ago, reflecting warmer and wetter summers than before. Sparser vegetation communities point to much more severe stadial conditions ca 190–130 kyr ago. Open grass and Artemisia communities with shrub stands (Alnus fruticosa, Salix, Betula nana) in more protected and moister places characterized the beginning of the Last Interglacial indicate climate conditions similar to present. Shrub tundra (Alnus fruticosa and Betula nana) dominated during the middle Eemian climatic optimum, when summer temperatures were 4–5 °C higher than today. Early-Weichselian sparse grass-sedge dominated vegetation indicates climate conditions colder and dryer than in the previous interval. Middle Weichselian Interstadial records indicate moister and warmer climate conditions, for example, in the interval 40–32 kyr BP Salix was present within dense, grass-sedge dominated vegetation. Sedge-grass-Artemisia-communities indicate that climate became cooler and drier after 30 kyr BP, and cold, dry conditions characterized the Late Weichselian, ca 26–16 kyr BP, when grass-dominated communities with Caryophyllaceae, Asteraceae, Cichoriaceae, Selaginella rupestris were present. From 16 to 12 kyr BP, grass-sedge communities with Caryophyllaceae, Asteraceae, and Cichoriaceae indicate climate was significantly warmer and moister than during the previous interval. The presence of Salix and Betula reflect temperatures about 4 °C higher than present at about 12–11 kyr BP, during the Allerød interval, but shrubs were absent in the Younger Dryas interval, pointing to a deterioration of climate conditions. Alnus fruticosa, Betula nana, Poaceae, and Cyperaceae dominate early Holocene spectra. Reconstructed absolute temperature values were substantially warmer than present (up to 12 °C). Shrubs gradually disappeared from coastal areas after 7.6 kyr BP when vegetation cover became similar to modern. A comparison of proxy-based paleoenvironmental reconstructions with the simulations performed by an Earth system model of intermediate complexity (CLIMBER-2) show good accordance between the regional paleodata and model simulations, especially for the warmer intervals.  相似文献   

13.
A pollen diagram from Lago di Martignano, a maar lake in central Italy, provides an 11000-year record of vegetation and environment change. The earliest pollen spectra are dominated by Artemisia and Gramineae, representing late glacial steppe vegetation typical of the Mediterranean region. Broad-leaved forests were established by ca. 11 000 yr BP. Although Quercus initially dominated their canopy, a wide range of other mesophyllous trees were also present. Pollen values for sclerophyllous tree and shrub taxa characteristic of Mediterranean woodlands and scrub are initially low (<10%). After ca. 7000 yr BP, however, they begin to increase and rise to a peak of >40% of total land pollen at ca. 6700 yr BP, with Olea europaea the single most abundant taxon. Human influence upon the vegetation only becomes significant somewhat after this peak, with progressive clearance of woodland and expansion of herbaceous communities. Castanea sativa and luglans regia pollen is recorded consistently from the beginning of the rise in pollen values for taxa characteristic of Mediterranean scrub communities. Pollen values for arable crops increase progressively after ca. 5500 yr BP, following the peak pollen values for taxa characteristic of Mediterranean scrub vegetation. Late glacial and Holocene climate changes have been complex in this region, with the present character of the climate developing only during the last millennium. Rates of change of pollen spectra peak during this period.  相似文献   

14.
A new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.  相似文献   

15.
Pollen productivity is one of the most critical parameters for pollen–vegetation relationships, and thus for vegetation reconstruction, in either pollen percentages or pollen accumulation rates. We obtain absolute pollen productivity of three major tree types in northern Finland: pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens ssp. pubescens and B. pubescens ssp. czerepanovii treated as one taxon). Long‐term monitoring records of pollen traps from 15 sites (duration: 5–23 years) and tree volume estimates within a 14 km radius of each trap were compared to estimate pollen productivity (grains m?3 a?1) of these trees using a regression method. The slope of the linear relationship between pollen loading and distance‐weighted plant abundance represents pollen productivity. Estimated productivities of pollen (×108 grains m?3 a?1) for pine, spruce and birch are 128.7 (SE 31.5), 341.9 (SE 81.3) and 411.4 (SE 307.7), respectively. The birch estimate (P > 0.05) is not as good as the others and should be used with caution. Pollen productivities of pine, spruce and birch in northern Finland are, in general, comparable to those of congeneric species in other regions of Europe and Japan. Although the year‐to‐year variations are significant, our volume‐based estimates of pollen productivity for pine and spruce will be essential for quantitative reconstruction of vegetation in the region. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Pollen taphonomy in a canyon stream   总被引:1,自引:0,他引:1  
Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae-Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.  相似文献   

17.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

18.
Pollen ratios have been commonly used to indicate landscape change and climate variation. However, the reliability of these indicators needs to be verified by studies on modern pollen process. Here, we synthesized the major pollen ratios used in previous studies and found that pollen ratios are valuable indicators for the change of vegetation types and climate, e.g., precipitation and moisture. Artemisia/Chenopodiaceae (A/C) ratio could increase from desert to steppe and positively correlate with mean annual precipitation (MAP). Artemisia/Cyperaceae (A/Cy) ratio could be used to identify cool meadow and warm steppe, and it is positively correlated with temperature of July (TJuly) and negatively correlated with MAP. Arboreal pollen/nonarboreal pollen (AP/NAP) ratio can be used as a semi-quantitative indicator for landscape and regional precipitation changes. In spite of the significant climatic and environmental implications of the pollen ratios, they were also questioned in some studies under various circumstances and thus caution is needed when using them to indicate climate in different vegetation zones.  相似文献   

19.
Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.  相似文献   

20.
Pollen accumulation rates (PARs) provide a potential proxy for quantitative tree volume (m3 ha?1) reconstruction with reliable absolute pollen productivity estimates (APPEs). We obtained APPEs for pine, spruce and birch at their range limits in northern Finland under two temperature periods (‘warm’ and ‘cold’) based on long‐term pollen trap and tree volume records within a 14‐km radius of each trap. APPEs (mean ± SE; × 108 grains m?3 a?1) tend to be higher for the ‘warm’ periods (pine 123.8 ± 24.4, birch 528.0 ± 398.4, spruce 434.3 ± 113.7) compared with the ‘cold’ periods (pine 95.5 ± 37.3, birch 317.3 ± 282.6, spruce 119.6 ± 37.6), although the difference is only significant for spruce. Using an independent temperature record and the APPEs obtained, we reconstruct a low‐frequency record of pine volume changes over the last 1000 years at Palomaa mire, where a high‐resolution record of Pinus PARs is available. Five phases are distinguished in the reconstruction: moderate pine volume, AD 1080–1170; high volume, AD 1170–1340; low volume, AD 1340–1630; very low volume, AD 1630–1810; and rising pine volume, AD 1810–1950. These phases do not coincide with periods of high or low June–July–August temperatures, and thus appear to reflect regional variations in tree volume, while high‐frequency changes within each time‐period block show variations in PARs in response to temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号