首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new occurrence of the rare corundum + quartz assemblage and magnesian staurolite has been found in a gedrite–garnet rock from the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe. Poikiloblastic garnet in the sample contains numerous inclusions of corundum + quartz ± sillimanite, magnesian staurolite + sapphirine ± orthopyroxene, and sapphirine + sillimanite assemblages, as well as monophase inclusions. Corundum, often containing subhedral to rounded quartz, occurs as subhedral to euhedral inclusions in the garnet. Quartz and corundum occur in direct grain contact with no evidence of a reaction texture. The textures and Fe–Mg ratios of staurolite inclusions and the host garnet suggest a prograde dehydration reaction of St → Grt + Crn + Qtz + H2O to give the corundum + quartz assemblage. Peak conditions of 890–930 °C at 9–10 kbar are obtained from orthopyroxene + sapphirine and garnet + staurolite assemblages. A clockwise PT path is inferred, with peak conditions being followed by retrograde conditions of 4–6 kbar and 500–570 °C. The presence of unusually magnesian staurolite (Mg / [Fe + Mg] = 0.47–0.53) and corundum + garnet assemblages provides evidence for early high-pressure metamorphism in the Central Zone, possibly close to eclogite facies. The prograde high-pressure event followed by high- to ultrahigh-temperature metamorphism and rapid uplifting of the Limpopo Belt could have occurred as a result of Neoarchean collisional orogeny involving the Zimbabwe and Kaapvaal Cratons.  相似文献   

2.
Here new mineralogical data is presented on the occurrence of K-feldspar in granulite-facies metagabbronorite xenoliths found in recent alkaline lavas from Western Sardinia, Italy. The xenoliths originated from the underplating of variably evolved subduction-related basaltic liquids, which underwent cooling and recrystallisation in the deep crust (T = 850–900 °C, P = 0.8–1.0 GPa). They consist of orthopyroxene + clinopyroxene + plagioclase porphyroclasts (An = 50–66 mol%) in a granoblastic, recrystallised, quartz-free matrix composed of pyroxene + plagioclase (An = 56–72 mol%) + Fe–Ti oxides ± K-feldspar ± biotite ± fluorapatite ± Ti-biotite. Texturally, the K-feldspar occurs in a variety of different modes. These include: (1) rods, blebs, and irregular patches in a random scattering of plagioclase grains in the form of antiperthite; (2) micro-veins along plagioclase–plagioclase and plagioclase–pyroxene grain rims; (3) myrmekite-like intergrowths with Ca-rich plagioclase along plagioclase–plagioclase grain boundaries; and (4) discrete anhedral grains (sometimes microperthitic). The composition of each type of K-feldspar is characterized by relatively high albite contents (16–33 mol%). An increasing anorthite content in the plagioclase towards the contact with the K-feldspar micro-vein and myrmekite-like intergrowths into the K-feldspar along the plagioclase–K-feldspar grain boundary are also observed. Small amounts of biotite (TiO2 = 4.7–6.5 wt.%; F = 0.24–1.19 wt.%; Cl = 0.04–0.20 wt.%) in textural equilibrium with the granulite-facies assemblage is present in both K-feldspar-bearing and K-feldspar-free xenoliths. These K-feldspar textures suggest a likely metasomatic origin due to solid-state infiltration of KCl-rich fluids/melts. The presence of such fluids is supported by the fluorapatite in these xenoliths, which is enriched in Cl (Cl = 6–50% of the total F + Cl + OH). These lines of evidence suggest that formation of K-feldspar in the mafic xenoliths reflects metasomatic processes, requiring an external K-rich fluid source, which operated in the lower crust during and after in-situ high-T recrystallisation of relatively dry rocks.  相似文献   

3.
C.W. Oh  S.W. Kim  I.S. Williams 《Lithos》2006,92(3-4):557-575
Spinel granulite formed in the Fe–Al-rich layers in migmatitic gneiss adjacent to a late Paleozoic collision-related mangerite intrusion in the Odesan area, eastern Gyeonggi Massif, South Korea, contains the high-temperature (HT) assemblage Crd + Spl + Crn. Spinel and cordierite compositions indicate peak metamorphic conditions of 914–1157 °C. Retrograde metamorphism reached amphibolite facies where garnet and cordierite broke down to biotite, sillimanite and quartz. These conditions, and the reactions inferred from mineral textures, are consistent with a clockwise PT path. Metamorphic zircon overgrowths in the spinel granulite and enclosing migmatitic gneiss, dated by SHRIMP U–Pb, yield Permo-Triassic ages of 245 ± 10 and 248 ± 18 Ma respectively, consistent with the metamorphism being a product of the late Paleozoic collision between the North and South China blocks within South Korea. The zircon core ages and textures suggest that the ultimate source of the spinel granulite was a Paleoproterozoic (1852 ± 14 Ma) igneous rock. The protolith of the host migmatitic gneiss was a sediment derived principally from 2.49, 2.16 and 1.86 Ga sources. The age and conditions of spinel granulite metamorphism are similar to those of spinel-bearing granulite in the Higo terrane in west-central Kyushu (250 Ma, > 950 °C at 8–9 kbar), consistent with a continuation of the Dabie-Sulu collision zone into Japan through the Odesan area.  相似文献   

4.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   

5.
Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet–hornblende–zoisite–chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks.

In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum-P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

PT estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740 °C. Grt + Opx from garnet-orthopyroxenite give 1.5–1.9 GPa at 740–770 °C, and Grt + Hbl + Zo + Chl from a zoisite-rich rock give 1.75 ± 0.25 GPa at 740 ± 30 °C, interpreted to represent recrystallization during uplift. In dunitic to harzburgitic compositions, early Ol + Opx ± Chl + Spl is succeeded by Ol ± Tlc ± Mgs, which in turn is overgrown by neoblasts of strain-free orthopyroxene, indicating temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

The ultramafic rocks in the Tromsø Nappe were locally strongly hydrated before subduction along with associated eclogites and metasedimentary rocks during the early (Ordovician) stages of the Caledonian orogeny.  相似文献   


6.
A vast supracrustal belt of khondalites (granulite facies metapelites) occur along the northern margin of the North China Craton. We report here for the first time spinel + quartz equilibrium assemblage from these rocks in two textural settings: (1) high ZnO (up to 14.47 wt.%) spinel with quartz as inclusions within garnet porphyroblasts defining pressure above 12 kbar and temperature of 900 °C; and (2) low ZnO (down to 1.2 wt.%) spinel in association with quartz in the matrix assemblage formed during peak ultrahigh-temperature conditions (ca. 975 °C and 9 kbar). We present a unique case of decompression where the metamorphic conditions of the rocks traversed mostly through the spinel + quartz (extended) stability field. Monazite grains in textural association with both types of spinel + quartz textures were analysed for age determination, and the data define two age peaks at 1927 ± 11 Ma and 1819 ± 11 Ma. Since the peak thermal regime of the khondalites was close to or exceeded the theoretical closure temperature of Pb in monazite, we infer the 1819 ± 11 Ma age as the timing of ultrahigh-temperature event in this craton. Our data lend support to the idea of ca. 1.9–1.8 Ga E–W collisional orogen at the northern margin of the North China Craton. We correlate the extreme crustal metamorphism with tectonics associated with the assembly of the North China Craton within the Columbia supercontinent.  相似文献   

7.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

8.
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones.  相似文献   

9.
New evidence for high-pressure, eclogite facies metamorphism in the crystalline basement of the Tisza Megaunit (southern Hungary) is reported. The retrogressed mafic eclogite forms a small lens in the orthogneiss and it was found in the borehole near Jánoshalma. The carbonated eclogite contains the peak metamorphic assemblage omphacite + garnet + phengite + kyanite + clinozoizite + rutile + K-feldspar + quartz. Omphacite (Xjd0.40–0.41Xdio0.52–0.53Xhd0.05Xaug1.55–2.85) occurs in the matrix and as inclusions in garnet (Xpy0.37–0.38Xgrs0.21–0.22Xalm0.39–0.40Xsps0–0.01Xadr0–0.01) and kyanite. Thermobarometry based on net-transfer reactions between garnet, omphacite, kyanite and phengite yields PT conditions of 710 ± 10 °C and 2.6 ± 0.75 GPa. Retrogression during decompression is manifested by formation of symplectites; the most typical are diopside + plagioclase after omphacite, corundum + spinel + plagioclase after kyanite and biotite + plagioclase after phengite. Carbonatization along the veins of the retrogressed eclogite was probably coeval with formation of these symplectites. At places where carbonate is absent the rock was completely hydrated and retrogressed down to the greenschist facies with the development of actinolite. Similar eclogites together with abundant orthogneisses occur mainly in the eastern parts of the Tisza Megaunit, suggesting the existence of an ancient (possibly Variscan) subduction/accretionary complex.  相似文献   

10.
R. Macdonald  B. Scaillet 《Lithos》2006,91(1-4):59-73
The central Kenya peralkaline province comprises five young (< 1 Ma) volcanic complexes dominated by peralkaline trachytes and rhyolites. The geological and geochemical evolution of each complex is described and issues related to the development of peralkalinity in salic magmas are highlighted. The peralkaline trachytes may have formed by fractionation of basaltic magma via metaluminous trachyte and in turn generated pantellerite by the same mechanism. Comenditic rhyolites are thought to have formed by volatile-induced crustal anatexis and may themselves have been parental to pantelleritic melts by crystal fractionation. The rhyolites record very low temperatures of equilibration (≤ 700 °C) at low fO2 (≤ FMQ). The development of compositional zonation within the magma reservoirs has been ubiquitous, involving up to tens of cubic km of magma at timescales of 103–104 years. Magma mixing has also been commonplace, sometimes between adjacent centres. Isotopic evidence relating to rates and timescales of pre-eruptive residence times and crystal fractionation processes is summarized.  相似文献   

11.
We conducted a series of melting experiments in the join forsterite–diopside–leucite under 0.1 and 2.3 GPa and in the join forsterite–leucite–åkermanite under 2.3 GPa to understand paragenetic relationships amongst different types of lamproitic and lamprophyric magmas with K-rich mafic and ultramafic volcanic (kamafugitic) rocks. Both the joins were studied in the presence of excess water. The experimental results of the join forsterite–diopside–leucite at 0.1 GPa show that the five-phase point of forsterite (Fo)ss + diopside (Di)ss + leucite (Lc)ss + liquid (Liq) + vapour (V) (equivalent to ugandite lava) occurs at Fo2Di50Lc48 at 880 ± 5 °C. Phlogopite appears as the last phase at 830 ± 15 °C. The final crystalline assemblage of forsteritess + diopsidess + leucitess + phlogopite is similar to the phenocryst assemblage of missourite lava. Present study suggests that an olivine leucitite (ugandite) can be derived from an olivine italite, a slightly potassic peridotite and a leucitite magma.

A study of the join Fo–Di–Lc [P(H2O) = P(Total)] at 2.3 GPa shows that liquid compositions penetrate the primary phase volumes of forsteritess, phlogopitess, kalsilitess, K-feldsparss and diopsidess. It has the following three five-phase points: 1) one occurring at Fo9Di49Lc42 and 1005 ± 5 °C, where liquid and vapour coexists with forsteritess, phlogopitess and diopsidess (phlogopite-bearing madupite), 2) the second one at Fo4Di50Lc46 and 990 ± 10 °C, where diopsidess, K-feldsparss and phlogopitess coexist with liquid and vapour (pyroxene-bearing minette), and 3) the third one at Fo3Di21Lc76 and 775 ± 5 °C, where phlogopitess, kalsilitess and K-feldsparss are in equilibrium with liquid plus vapour (kalsilite-bearing minette).

The experimental results of the join Fo–Lc–åkermanite (Ak) show that the join 40 penetrates the primary phase volumes of forsteritess, phlogopitess, kalsilite, K-feldsparss, diopsidess and merwinitess. The data indicate the presence of four five-phase points: 1) one occurring at Fo7Lc42Ak51 and 1165 ± 5 °C, where phlogopitess, forsteritess, diopsidess coexists with liquid and vapour (olivine-bearing madupite), 2) the second one at Fo3Lc49Ak48 and 1140 ± 10 °C, where a liquid is in equilibrium with phlogopitess, K-feldsparss, diopsidess and vapour (pyroxene-bearing minette), 3) the third one at Fo18Lc21Ak61 and 1255 ± 10 °C, where merwinitess, forsteritess and diopsidess are in equilibrium with liquid and vapour (merwinite-bearing wherlite), and 4) the fourth one at Fo5Lc73.5Ak21.5 and 770 ± 5 °C, where kalsilitess, phlogopitess and K-feldspar coexist with liquid and vapour (kalsilite-bearing minette). The present data suggest that high pressure heteromorphic equivalent of a katungite magma is represented by a kalsilite-bearing minette, a pyroxene-bearing minette, or an olivine-bearing madupite.  相似文献   


12.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


13.
Mineralogical data, coupled with whole-rock major and trace element data of mafic xenoliths from two occurrences of the Egyptian Tertiary basalts, namely Abu Zaabal (AZ) near Cairo and Gabal Mandisha (GM) in the Bahariya Oases, are presented for the first time. Chemically, AZ basalts are sodic transitional, while those of GM are alkaline. In spite of the different petrographic and geochemical features of the host rocks, mafic xenoliths from the two occurrences are broadly similar and composed essentially of clinopyroxene, plagioclase, alkali feldspar, and Fe–Ti oxides. The analytical results of host rocks, xenoliths and their minerals suggest that the xenoliths are cognate to their host magmas rather than basement material. The mafic xenoliths are olivine-free and contain alkali feldspar contrary to the phenocryst assemblage of the host rocks, confirming that they are not cumulates from the host magma. The geochemical and mineralogical characteristics show that the precursor magmas of these xenoliths are more fractionated and possibly contaminated compared to those of the host rocks. Estimated crystallization conditions are  1–3 kbar for xenoliths from both areas, and temperature of  950–1100 °C vs. 920–1050 °C for AZ and GM, respectively. These cognate xenoliths probably crystallized from early-formed, highly-fractionated anhydrous magma batches solidified in shallow crustal levels, possibly underwent some AFC during their ascent, and later ripped-up during fresh magma pulses. The xenoliths, although rare, provide an evidence for the importance of crystal fractionation at early evolution of the Egyptian Tertiary basalts.  相似文献   

14.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


15.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   


16.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

17.
M. Santosh  K. Sajeev   《Lithos》2006,92(3-4):447-464
We report three new localities of corundum and sapphirine-bearing hyper aluminous Mg-rich and silica-poor ultrahigh-temperature granulites formed during Late Neoproterozoic-Cambrian times within the Palghat–Cauvery Shear Zone system in southern India. From petrologic characteristics, mineral chemistry and petrogenetic grid considerations, the peak metamorphic conditions of these rocks are inferred to lie around 950–1000 °C (as suggested by Al in orthopyroxene thermometer) at pressures above 10 kbar (as indicated by the equilibrium orthopyroxene–sillimanite–gedrite ± quartz assemblage). These rocks preserve several remarkable reaction textures, the most prominent among which is the triple corona of spinel–sapphirine–cordierite on corundum, with the whole textural assembly embedded within the matrix of gedrite, suggesting the reaction: Ged + Crn = Spl + Spr + Crd. The formation of sapphirine–sillimanite assemblage/symplectite associated with relict corundum and porphyroblasitc cordierite is explained by the reaction: Crd + Crn = Spr + Sil. The association of sapphirine cordierite symplectite with gedrite–sillimanite assemblage as well as with aluminosilicate boundaries indicates the gedrite consuming reaction: Ged + Sil = Spr + Crd. Extensive growth of sapphirine–cordierite observed on the rim of gedrite porphyroblasts with spinel occurring as relict inclusions within the sapphirine indicates the reaction: Ged + Spl = Spr + Crd. The pressure–temperature (PT) path defined from the observed mineral assemblages and reaction texture is characterized by anticlockwise trajectory, with a prograde segment of initial heating and subsequent deep burial, followed by retrograde near-isothermal decompression. Such an anticlockwise trajectory is being reported for the first time from southern India and has important tectonic implications since these rocks were developed at the leading edge of the crustal block that was involved in collisional orogeny and subsequent extension during the final phase of assembly of the Gondwana supercontinent. We propose that the rocks were subjected to deep subduction and rapid exhumation, and the extreme thermal conditions were attained either through input from underplated mantle-derived magmas, or convective thinning or detachment of the lithospheric thermal boundary layer during or after crustal thickening.  相似文献   

18.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

19.
The Indosinian granites in the South China Block (SCB) have important tectonic significance for the evolution of East Asia. Samples collected from Hunan Province can be geochemically classified into two groups. Group 1 is strongly peraluminous (A/CNK > 1.1), similar to S-type granites, and Group 2 has A/CNK = 1.0–1.1, with an affinity to I-type granites. Group 1 has lower FeOt, Al2O3, MgO, CaO, TiO2 and εNd(t) values but higher K2O + Na2O, Rb/Sr, Rb/Ba and 87Sr/86Sr(t) than those of Group 2. Samples of both groups have similar LREE enriched pattern, with (Eu/Eu) = 0.19–0.69, and strongly negative Ba, Sr, Nb, P and Ti anomalies. Geothermobarometry study indicates that the precursor magmas were emplaced at high-level depth with relatively low temperature (734–827 °C). Geochemical data suggest that Group 1 was originated from a source dominated by pelitic composition and Group 2 was from a mixing source of pelitic and basaltic rocks with insignificant addition of newly mantle-derived magma. Eight granitic samples in Hunan Province are dated at the cluster of 243–235 and 218–210 Ma by zircon U–Pb geochronology. Together with recent zircon U–Pb ages for other areas in the SCB, two age-clusters, including 243–228 Ma just after peak-metamorphism ( 246–252 Ma) and 220–206 Ma shortly after magma underplating event (224 Ma), are observed. It is proposed that in-situ radiogenic heating from the over-thickened crust induced dehydrated reaction of muscovite and epidote/zoisite to form the early Indosinian granites in response to the isostatic readjustments of tectonically thickened crust. Conductive heating from the underplating magma in the postcollisional setting triggered the formation of late Indosinian granites. Such a consideration is supported by the results from FLAC numerical simulation.  相似文献   

20.
Late Triassic granitoids in the Songpan-Garzê Fold Belt (SGFB), on the eastern margin of the Tibetan Plateau, formed at 230 to 220 Ma and can be divided into two groups. Group 1 are high-K calc-alkaline rocks with adakitic affinities (K-adakites), with Sr > 400 ppm, Y < 11 ppm, strongly fractionated REE patterns ((La/Yb)N = 32–105) and high K2O/Na2O (≈ 1). Group 2 are ordinary high-K calc-alkaline I-types with lower Sr (< 400 ppm), higher Y (> 18 ppm) and weakly fractionated REE patterns ((La/Yb)N < 20). Rocks of both groups have similar negative Eu anomalies (Eu/Eu = 0.50 to 0.94) and initial 87Sr/86Sr (0.70528 to 0.71086), but group 1 rocks have higher εNd(t) (− 1.01 to − 4.84) than group 2 (− 3.11 to − 6.71). Calculated initial Pb isotope ratios for both groups are: 206Pb/204Pb = 18.343 to 18.627, 207Pb/204Pb = 15.610 to 15.705 and 208Pb/204Pb = 38.269 to 3759. Group 1 magmas were derived through partial melting of thickened and then delaminated TTG-type, eclogitic lower crust, with some contribution from juvenile enriched mantle melts. Group 2 magmas were generated by partial melting of shallower lower crustal rocks. The inferred magma sources of both groups suggest that the basement of the SGFB was similar to the exposed Kangding Complex, and that the SGFB was formed in a similar manner to the South China basement. Here, passive margin crust was greatly thickened and then delaminated, all within a very short time interval ( 20 Myr). Such post-collisional crustal thickening could be the tectonic setting for the generation of many adakitic magmas, especially where there is no spatial and temporal association with subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号