首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes methods of calculating the response of a flat galaxy of stars to a perturbation which can depend on time and on angle. The starting point is the response to a pulse: the response to any other time dependence can be found by convolution. A single orbit responds with growing oscillations at the resonant frequencies, so the Laplace transform of the orbital response has a set of double poles along the real frequency axis. The problem of finding the response of the system is the problem of integrating these poles over all orbits.A simple expression for the orbital response is found in terms of the derivatives of Hankel-Laguerre functions with respect to action-angle variables. These derivatives can be computed with the aid of the computationally convenient variables introduced in Paper I.The Laplace transform of the system response is expanded in a series of simple basis functions. The expansion coefficients are found as integrals over all orbits of the basis functions multipled by the amplitudes of the orbital response at the resonant frequencies. The integrands are not singular, and the integration is straightforward.  相似文献   

2.
The convergence of Lagrange series is studied on a part of the elliptical orbit for values of eccentricity exceeding the Laplace limit. The regions in the vicinity of the two apses of the orbit are identified in which the Lagrange series converge absolutely and uniformly for the values of the eccentricity greater than the Laplace limit. The obtained results are of practical interest for astronomy when studying motions of stellar bodies in orbits with high eccentricity. In particular, these series may be used to calculate the orbits of comets or asteroids with high eccentricity as they pass through the neighborhood of perihelion or to calculate the orbits of artificial satellites with high eccentricity “hanging” in the vicinity of apogee. In stellar dynamics, these series may be used in cases of close binary stars, many of which move in orbits with an eccentricity greater than the Laplace limit.  相似文献   

3.
The determination of the secular variations of the orbital elements of objects in N-body systems is based on the literal development of the perturbing function. The development makes use of the Laplace coefficients and their derivatives. In this paper a new method is described for the analytical computation of the derivatives of the Laplace coefficients. It is an explicit formula in the sense that it only contains the Laplace coefficients and the parameter on which the Laplace coefficients depend. The advantage of this method is that it is unnecessary to calculate all the derivatives up to the desired order. It is enough to calculate the Laplace coefficients. Easy coding is a further benefit of the method and it provides more accurate numerical results. The paper describes in detail the application of the method through an example and gives comparison with former methods.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
由改进的Laplace和Gauss方法分别给出小行星初轨计算的程序,通过两程序的比较测试得出结论——两方法适用于三次长时间间隔的角观测资料。为实现一天内角观测资料的小行星初轨计算与位置预报,对改进的Laplace方法流程进行了调整。通过增加迭代方程右矩阵的调整,预报结果可用于指导小行星的跟踪观测,文中给出调整后的流程图及预报效果数值验证。  相似文献   

5.
Dynamical evolution of a relativistic explosion resulting from a large amount of energy release in a homogenous medium is studied using the Khalatnikov equation describing relativistic, hydrodynamic, planar flow. The early phase of the explosion is idealized to two stages: a free expansion and a shock wave stage. By the hodograph transformation inverting the dependent and independent variables, the hydrodynamic equations for the relativistic flow are reduced to second-order linear equations in a velocity-enthalpy space and they are solved by the method of Laplace transformation. The propagation laws and flow structures of the relativistic expansion are obtained at each stage. In the free expansion stage, the flow with a sufficiently high sound velocity forms a thin shell of the energy density in the comoving frame at the front and accelerates the front. In the shock wave stage, the Lorentz factor of the shock front decreases logarithmically with time. The transition time from a free expansion to a shock wave stage suggests that the super-light expansion observed in extragalactic radio sources has no spherical geometry but must be confined to a narrow cone.  相似文献   

6.
考虑地球扁率摄动影响的初轨计算方法   总被引:5,自引:0,他引:5  
刘林  王歆 《天文学报》2003,44(2):175-179
在二体问题意义下的短弧定轨,Laplace型方法是最主要最典型的一种初轨计算方法。若测角资料达到10^-4-10^-5精度(相当于2″—20″之间),那么要使定轨精度达到与其相应的程度,地球非球形引力位中的扁率项摄动应该考虑,在此前提下,同样可以采用相应的Laplace型定轨方法。即给出这种严格包含扁率摄动的初轨计算方法的原理和具体计算过程以及计算实例,除采用多资料定轨方法外,这种方法也是提高初轨计算精度的一种途径,它同样可用于多资料的情况,这种方法对于大扁率主天体(即中心天体)的卫星定轨将更有实用价值。  相似文献   

7.
A system of averaged equations of planetary motion around a central star is constructed. An astrocentric coordinate system is used. The two-planet problem is considered, but all constructions are easily generalized to an arbitrary number N of planets. The motion is investigated in modified (complex) Poincarécanonical elements. The averaging is performed by the Hori–Deprit method over the fast mean longitudes to the second order relative to the planetary masses. An expansion of the disturbing function is constructed using the Laplace coefficients. Some terms of the expansion of the disturbing function and the first terms of the expansion of the averaged Hamiltonian are given. The results of this paper can be used to investigate the evolution of orbits with moderate eccentricities and inclinations in various planetary systems.  相似文献   

8.
A method for the expansion of the perturbative Hamiltonian in the planetary problem is presented, which allows one to immediately detect the terms vanishing under the averaging process. The method bases itself on a geometrical analysis, through the groups SO(3) and SU(2), of the Poincaré canonical variables or of the similar Laplace variables. As an outcome, one obtains a MAPLE program, which calculates the first averaged terms of the perturbative Hamiltonian. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This paper is concerned with the Laplace boundary-value problem with the directional derivative, corresponding to the specific nature of measurements of the longitudinal component of the photospheric magnetic field. The boundary conditions are specified by a distribution on the sphere of the projection of the magnetic field vector into a given direction, i.e., they exactly correspond to the data of daily magnetograms distributed across the full solar disk. It is shown that the solution of this problem exists in the form of a spherical harmonic expansion, and uniqueness of this solution is proved. A conceptual sketch of numerical determination of the harmonic series coefficients is given. The field of application of the method is analyzed with regard to the peculiarities of actual data. Results derived from calculating magnetic fields from real magnetograms are presented. Finally, we present differences in results derived from extrapolating the magnetic field from a synoptic map and a full-disk magnetogram.  相似文献   

10.
This paper provides a method to study the solution of equations for synchronous binary stars with large eccentricity on the main sequence.The theoretical results show that the evolution of the eccentricity is linear with time or follows an exponential form,and the semi-major axis and spin vary with time in an exponential form that are different from the results given in a previous paper.The improved method is applicable in both cases of large eccentricity and small eccentricity.In addition,the number of terms in the expansion of a series with small eccentricity is very long due to the series converging slowly.The advantage of this method is that it is applicable to cases with large eccentricity due to the series converging quickly.This paper chooses the synchronous binary star V1143 Cyg that is on the main sequence and has a large eccentricity(e = 0.54) as an example calculation and gives the numerical results.Lastly,the evolutionary tendency including the evolution of orbit and spin,the time for the speed up of spin,the circularization time,the orbital collapse time and the life time are given in the discussion and conclusion.The results shown in this paper are an improvement on those from the previous paper.  相似文献   

11.
A new scale transformation to the integrated velocity vector is designed to monitor the accumulation of numerical errors in several integrals of motion. The scale factor is derived from the least-squares correction that minimizes the sum of the squares of the errors of these integrals. In order to preserve an invariant, we employ the velocity scaling method for rigorously satisfying the constraint. When adjusting many constants, the new scheme like other existing methods is valid to typically reduce the integration errors below those of an uncorrected integrator. Via integral invariant relations, the new method is also able to treat slowly-varying quantities, such as the Keplerian energy and the Laplace vector, for a perturbed Keplerian problem or each of multiple bodies in the solar system dynamics. Consequently it does nearly agree with the rigorous dual scaling method in the sense of drastically improving the integration accuracy. As one of its advantages, the implementation of the new method is significantly easier than that of other methods. In particular, the method can be simply applied to a complicated dynamical system with some constraints.  相似文献   

12.
The efficiency in the computation of circular functions, such as cos(u) or sin(u), where u is a Poisson series, is important to derive accurate solutions of many problems of Celestial Mechanics, for instance, the orbital or rotational perturbed motion of natural or artificial bodies, since expansions in terms of Legendre functions and multiple Fourier series appear almost everywhere. Therefore, it is worth searching for alternative algorithms with lower computational cost. In this article, we propose a method based on the idea of elimination, which was originally applied to solve numerical problems, mainly in the case of matrix functions. Our comparisons with the traditional Taylor expansion prove that this new method can be more efficient when applied to compute the sine and cosine of a Poisson series.  相似文献   

13.
14.
A new method of nonradial pulsation mode identification is developed. This method is based on Fourier analysis of time series line profile variations that have been merged into a one-dimensional equally spaced dataset. In principle, this method is identical to that of two-dimensional Fourier transform of line profile time series, but it is much more convenient to use for most of astronomers who have experience in period analysis of light curves. The features of both temporal frequency and Doppler spatial frequency can be accurately retrieved. This method provides an easy way to carry out mode identification from line profiles and minimizes the uncertainty of mode determination caused by random noise. Comments and assessment of related methods of mode identification are given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The time-dependent equation of radiative transfer for a finite, plane-parallel, non-radiating, and isotropically scattering atmosphere of arbitrary stratification is solved by using the integral equation method. The medium is taken to be inhomogeneous. The Laplace transform is used in the time domain. It is seen that the obtained solutions are reducible to the corresponding ones for steady-state problems by simply changing the Laplace transform parameter to zero.  相似文献   

16.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically conducting fluid past an exponentially accelerated infinite vertical plate is analysed for both cases, when the magnetic lines of force are fixed relative to the fluid and the plate, respectively. The Laplace transform method is used to obtain the expressions for velocity and skin-friction. The effect of a magnetic parameter is to decrease the velocity of water when the magnetic field is fixed to the fluid, while it increases the velocity field when the magnetic lines of force are fixed relative to the plate.  相似文献   

17.
In situ data provide only a one-dimensional sample of the plasma velocity along the spacecraft trajectory crossing an interplanetary coronal mass ejection (ICME). Then, to understand the dynamics of ICMEs it is necessary to consider some models to describe it. We derive a series of equations in a hierarchical order, from more general to more specific cases, to provide a general theoretical basis for the interpretation of in situ observations, extending and generalizing previous studies. The main hypothesis is a self-similar expansion, but with the freedom of possible different expansion rates in three orthogonal directions. The most detailed application of the equations is though for a subset of ICMEs, magnetic clouds (MCs), where a magnetic flux rope can be identified. The main conclusions are the following ones. First, we obtain theoretical expressions showing that the observed velocity gradient within an ICME is not a direct characteristic of its expansion, but that it depends also on other physical quantities such as its global velocity and acceleration. The derived equations quantify these dependencies for the three components of the velocity. Second, using three different types of data we show that the global acceleration of ICMEs has, at most, a small contribution to the in situ measurements of the velocity. This eliminates practically one contribution to the observed velocity gradient within ICMEs. Third, we provide a method to quantify the expansion rate from velocity data. We apply it to a set of 26 MCs observed by Wind or ACE spacecrafts. They are typical MCs, and their main physical parameters cover the typical range observed in MCs in previous statistical studies. Though the velocity difference between their front and back includes a broad range of values, we find a narrow range for the determined dimensionless expansion rate. This implies that MCs are expanding at a comparable rate, independently of their size or field strength, despite very different magnitudes in their velocity profiles. Furthermore, the equations derived provide a base to further analyze the dynamics of MCs/ICMEs.  相似文献   

18.
The method for processing perturbed Keplerian systems known today as the linearization was already known in the XVIIIth century; Laplace seems to be the first to have codified it. We reorganize the classical material around the Theorem of the Moving Frame. Concerning Stiefel's own contribution to the question, on the one hand, we abandon the formalism of Matrix Theory to proceed exclusively in the context of quaternion algebra; on the other hand, we explain how, in the hierarchy of hypercomplex systems, both the KS-transformation and the classical projective decomposition emanate by doubling from the Levi-Civita transformation. We propose three ways of stretching out the projective factoring into four-dimensional coordinate transformations, and offer for each of them a canonical extension into the moment space. One of them is due to Ferrándiz; we prove it to be none other than the extension of Burdet's focal transformation by Liouville's technique. In the course of constructing the other two, we examine the complementarity between two classical methods for transforming Hamiltonian systems, on the one hand, Stiefel's method for raising the dimensions of a system by means of weakly canonical extensions, on the other, Liouville's technique of lowering dimensions through a Reduction induced by ignoration of variables.  相似文献   

19.
刘林  张巍 《天文学报》2007,48(2):220-227
论述的短弧定轨,是指在无先验信息情况下又避开多变元迭代的初轨计算方法,它需要相应的动力学问题有一能反映短弧内达到一定精度的近似分析解.探测器进入月球引力作用范围后接近月球时可以处理成相对月球的受摄二体问题,而在地球附近,则可处理成相对地球的受摄二体问题,但在整个过渡段的力模型只能处理成一个受摄的限制性三体问题.而限制性三体问题无分析解,即使在月球引力作用范围外,对于大推力脉冲式的过渡方式,相对地球的变化椭圆轨道的偏心率很大(超过Laplace极限),在考虑月球引力摄动时亦无法构造摄动分析解.就此问题,考虑在地球非球形引力(只包含J2项)和月球引力共同作用下,构造了探测器飞抵月球过渡轨道段的时间幂级数解,在此基础上给出一种受摄二体问题意义下的初轨计算方法,经数值验证,定轨方法有效,可供地面测控系统参考.  相似文献   

20.
Using the binomial expansion theorem, the simple general analytical expressions are obtained for the Voigt function arising in various fields of physical research. As we will seen, the present formulation yields compact closed-form expressions which enable the ready analytical calculation of the Voigt function. The validity of this approximation is tested by other calculation methods. The series expansion relations established in this work are accurate enough in the whole range of parameters. The convergence rate of the series is estimated and discussed. Some examples of this methodology are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号