首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea surface winds and coastal winds, which have a significant influence on the ocean environment, are very difficult to predict. Although most planetary boundary layer (PBL) parameterizations have demonstrated the capability to represent many meteorological phenomena, little attention has been paid to the precise prediction of winds at the lowest PBL level. In this study, the ability to simulate sea winds of two widely used mesoscale models, fifth-generation mesoscale model (MM5) and weather research and forecasting model (WRF), were compared. In addition, PBL sensitivity experiments were performed using Medium-Range Forecasts (MRF), Eta, Blackadar, Yonsei University (YSU), and Mellor–Yamada–Janjic (MYJ) during Typhoon Ewiniar in 2006 to investigate the optimal PBL parameterizations for predicting sea winds accurately. The horizontal distributions of winds were analyzed to discover the spatial features. The time-series analysis of wind speed from five sensitivity experimental cases was compared by correlation analysis with surface observations. For the verification of sea surface winds, QuikSCAT satellite 10-m daily mean wind data were used in root-mean-square error (RMSE) and bias error (BE) analysis. The MRF PBL using MM5 produced relatively smaller wind speeds, whereas YSU and MYJ using WRF produced relatively greater wind speeds. The hourly surface observations revealed increasingly strong winds after 0300 UTC, July 10, with most of the experiments reproducing observations reliably. YSU and MYJ using WRF showed the best agreements with observations. However, MRF using MM5 demonstrated underestimated winds. The conclusions from the correlation analysis and the RMSE and BE analysis were compatible with the above-mentioned results. However, some shortcomings were identified in the improvements of wind prediction. The data assimilation of topographical data and asynoptic observations along coast lines and satellite data in sparsely observed ocean areas should make it possible to improve the accuracy of sea surface wind predictions.  相似文献   

2.
In this work, the impact of assimilation of conventional and satellite data is studied on the prediction of two cyclonic storms in the Bay of Bengal using the three-dimensional variational data assimilation (3D-VAR) technique. The FANOOS cyclone (December 6?C10, 2005) and the very severe cyclone NARGIS (April 28?CMay 2, 2008) were simulated with a double-nested weather research and forecasting (WRF-ARW) model at a horizontal resolution of 9?km. Three numerical experiments were performed using the WRF model. The back ground error covariance matrix for 3DVAR over the Indian region was generated by running the model for a 30-day period in November 2007. In the control run (CTL), the National Centers for Environmental Prediction (NCEP) global forecast system analysis at 0.5° resolution was used for the initial and boundary conditions. In the second experiment called the VARCON, the conventional surface and upper air observations were used for assimilation. In the third experiment (VARQSCAT), the ocean surface wind vectors from quick scatterometer (QSCAT) were used for assimilation. The CTL and VARCON experiments have produced higher intensity in terms of sea level pressure, winds and vorticity fields but with higher track errors. Assimilation of conventional observations has meager positive impact on the intensity and has led to negative impact on simulated storm tracks. The QSCAT vector winds have given positive impact on the simulations of intensity and track positions of the two storms, the impact is found to be relatively higher for the moderate intense cyclone FANOOS as compared to very severe cyclone NARGIS.  相似文献   

3.
在渤海,中尺度模式预报的风速通常比实际风速低得多.利用1990-2001年渤海不同观测站的风场、温度场资料,按季节、风向对海、陆风速统计分析,得到海陆风速的对比值,同时对造成海陆风速差异的原因进行动力、热力等分析.结果表明:海、陆风速在不同的天气系统以及动力和热力方面都存在明显差异.据此渤海风速场推算模式进行了改进,既考虑动力摩擦的作用,也考虑热力差异引起的海陆风增幅作用,改进的渤海风场推算模式有了很大的提高.因此,应用改进后的渤海风速场推算模式,对中尺度数值预报的风速场进行订正,使预报的风速明显提高,更加接近实际情况.  相似文献   

4.
Chinese Global operational Oceanography Forecasting System (CGOFS) is configured in three levels of nested grids from global ocean, open ocean to offshore. This global operational oceanography forecasting system architecture is firstly bulit in China by the National Marine Environmental Forecasting Center (NMEFC). It has been put into operational forecasting at NMEFC, providing real-time forecasting of multi-scale ocean current, temperature, salinity, wave, sea surface wind, etc. All the ocean forecasting products are released in many ways and made available through the online, realizing full-range coverage in resolution from hundreds kilometer to several kilometer. The CGOFS includes 8 subsystems: global sea-surface wind numerical forecasting subsystem, global ocean circulation numerical forecasting subsystem, global ocean wave numerical forecasting subsystem, global tide and tidal current forecasting subsystem, Indian Ocean marine environment numerical forecasting subsystem, polar sea ice numerical forecasting subsystem, refined marine environment numerical forecasting for China’s surrounding waters,and integration management subsystem for operational support service of the CGOFS. Operational applications of the CGOFS are closely connected with China’s economic-social development and military security needs. For example, the CGOFS palys a crucial role in environmental forecasting for Chinese research vessel and icebreaker Xuelong, MH370 Searching, submersible “Jiaolong” exploration and nuclear contaminant transport from Fukushima Daiichi nuclear power plant, providing important scientific support for developing an ocean power, protecting national maritime rights, ensuring marine safety and coping with ocean problems in emergency.  相似文献   

5.
Forecasting skill of weather research and forecasting (WRF) model in simulating typhoons over the West Pacific and South China Sea with different trajectories has been studied in terms of track direction and intensity. Four distinct types of typhoons are chosen for this study in such a way that one of them turns toward left during its motion and had landfall, while the second took a right turn before landfall. The third typhoon followed almost a straight line path during its course of motion, while the fourth typhoon tracked toward the coast and just before landfall, ceased its motion and travelled in reverse direction. WRF model has been nested in one way with a coarse resolution of 9?km and a fine resolution of 3?km for this study, and the experiments are performed with National Center for Environmental Prediction-Global Forecasting System (NCEP-GFS) analyses and forecast fields. The model has been integrated up to 96?h and the simulation results are compared with observed and analyzed fields. The results show that the WRF model could satisfactorily simulate the typhoons in terms of time and location of landfall, mean sea-level pressure, maximum wind speed, etc. Results also show that the sensitivity of model resolution is less in predicting the track, while the fine-resolution model component predicted slightly better in terms of central pressure drop and maximum wind. In the case of typhoon motion speed, the coarse-resolution component of the model predicted the landfall time ahead of the actual, whereas the finer one produced either very close to the best track or lagging little behind the best track though the difference in forecast between the model components is minimal. The general tendency of track error forecast is that it increases almost linearly up to 48?h of model simulations and then it diverges quickly. The results also show that the salient features of typhoons such as warm central core, radial increase of wind speed, etc. are simulated well by both the coarse and fine domains of the WRF model.  相似文献   

6.
A time-dependent model for stratification and circulation within the Baltic entrance area (Gustafsson 2000) is tested against observed salinities for the period 1961–1993. Although the Baltic Sea is one of the largest estuarine systems on earth, this model could be applicable to smaller estuarine systems and embayments with tidal exchange. The seasonal cycle of freshwater flux across the sill area does not follow the seasonal cycle of freshwater supply to the Baltic Sea. The seasonal variation of the flux is a combined effect of the seasonal variation in freshwater supply, in Baltic mean sea level, and in dispersion of salt across the sills. The seasonal variation in dispersion of salt is due to the seasonal cycle of sea level variability. The model is used to predict the inflow of high saline water to the Baltic Sea. The resulting inflow time-series is consistent with variations in the deep-water salinity and temperature in the deeper parts of the Baltic Sea. A comparison with previous estimates of the magnitude of major Baltic inflows shows that the model is able to reproduce the characteristics fairly well although the magnitude of the flows of water and salt appears lower than other estimates. It is shown that a climatic change that increases the wind mixing does not significantly change the major inflows. Both increased amplitudes of sea level variations in the Kattegat and decreased freshwater supply to the Baltic Sea substantially increase the magnitude of the inflows. It is shown that deep-water renewal in the Baltic Sea is obstructed during years with high freshwater supply even if the sea level forcing is favorable to a major inflow.  相似文献   

7.
Observation and assessment of wind resources is a prerequisite for wind farm construction. Due to the investment cost of offshore wind farm is very expensive, more accurate assessment of wind resources is needed to reduce their investment risks. From traditional field observation to multi-platform remote sensing and from ordinary mathematical statistics to coupled numerical model simulation, abundant offshore wind data and evolving assessment methods make the results of offshore wind resource assessment more and more reliable. Poor station observations and rich remote sensing data are distinct characteristics of offshore wind data. Technology integration of applying multi-scale coupled models to assimilate multi-source remote sensing and station data is a mainstream development direction of offshore wind resource assessment methods. The wind resource assessment for offshore wind farm should focus on data quality and method selections of data interpolation, wind speed calculation of return period and wind energy parameters adjusted for a long term condition because these factors can significantly affect the operating efficiency of future wind farm.  相似文献   

8.
High-quality informations on sea level pressure and sea surface wind stress are required to accurately predict storm surges over the Korean Peninsula. The storm surge on 31 March 2007 at Yeonggwang, on the western coast, was an abrupt response to mesocyclone development. In the present study, we attempted to obtain reliable surface winds and sea level pressures. Using an optimal physical parameterization for wind conditions, MM5, WRF and COAMPS were used to simulate the atmospheric states that accompanied the storm surge. The use of MM5, WRF and COAMPS simulations indicated the development of high winds in the strong pressure gradient due to an anticyclone and a mesocyclone in the southern part of the western coast. The response to this situation to the storm surge was sensitive. A low-level warm advection was examined as a possible causal mechanism for the development of a mesocyclone in the generating storm surge. The low-level warm temperature advection was simulated using the three models, but MM5 and WRF tended to underestimate the warm tongue and overestimate the wind speed. The WRF simulation was closer to the observed data than the other simulations in terms of wind speed and the intensity of the mesocyclone. It can be concluded that the magnitude of the storm surge at Yeonggwang was dependent, not only on the development of a mesocyclone but on ocean effects as well.  相似文献   

9.
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow.  相似文献   

10.
The disastrous effects of numerous winter storms on the marine environment in the North Sea and the Baltic Sea during the last decade show that wind waves generated by strong winds actually represent natural hazards and require high quality wave forecast systems as warning tools to avoid losses due to the impact of rough seas. Hence, the operational wave forecast system running at the German Weather Service including a regional wave model for the North Sea and the Baltic Sea is checked extensively whether it provides reasonable wave forecasts, especially for periods of extraordinary high sea states during winter storms. For two selected extreme storm events that induced serious damage in the area of interest, comprehensive comparisons between wave measurements and wave model forecast data are accomplished. Spectral data as well as integrated parameters are considered, and the final outcome of the corresponding comparisons and statistical analysis is encouraging. Over and above the capability to provide good short-term forecast results, the regional wave model is able to predict extreme events as severe winter storms connected with extraordinary high waves already about 2 days in advance. Therefore, it represents an appropriate warning tool for offshore activities and coastal environment.  相似文献   

11.
The Late Pleistocene and Holocene glacial and postglacial sediments of the Baltic Sea basin are conventionally classified into units according to the so‐called Baltic Sea stages: Baltic Ice Lake, Yoldia Sea, Ancylus Lake and Litorina Sea. The Baltic Sea stages have been identified in offshore sediment cores by fundamentally different criteria, precluding detailed comparisons of the sediment units amongst different sea areas and studies. Here, long sediment cores and reflection seismic and pinger sub‐bottom profiles were studied from an offshore area in the Gulf of Finland, northern Baltic Sea. The strata are divided on the basis of sedimentological criteria into three allostratigraphical formations with subordinate allostratigraphical members and lithostratigraphical formations, following the combined allostratigraphical and lithostratigraphical (CUAL) approach. Sedimentological features are recommended as the primary stratigraphical classification criteria because they do not require the palaeoenvironmental inferences of salinity and water level that are inherent in the conventional classification practice. The presented stratigraphical division is proposed as a flexible template for future stratigraphical work on the Baltic Sea basin, whereby lower‐rank allounits and lithounits can be included and removed locally, while the alloformations will remain at the highest hierarchical level and guarantee regional correlatability. The stratigraphical division is compatible with international guidelines, facilitating communication to the wider scientific community and comparison with other similar basins.  相似文献   

12.
The isostatic land uplift after the latest glaciation period in northern Europe means that the descending wave base in the eutrophicated Baltic Sea continuously exposes new bottom areas to increasing wind and wave-induced erosion. Erosion adds considerable amounts of phosphorus (P) and clay particles to the water column. This study has used a dynamic mass-balance model to investigate how land uplift affects the whole P cycle in the five major subbasins of the Baltic Sea. The model uses a unitary set of variables and constants for all subbasins with the exception of measurable, basin-specific driving variables. Differences in P concentrations between the subbasins could be quite accurately quantified only when the land uplift gradient was used as a driving variable. The clarifying effect from clay particles was found to be a major reason why those subbasins with the most intensive land uplift rates were also the ones with the lowest P concentrations. Without using the land uplift gradient as a model input, concentration differences could not be quantitatively explained in a meaningful way. Furthermore, simulations showed that clay particle erosion from land uplift has a substantial impact on all major internal P fluxes of the Baltic Sea. At the turn of the millennium, one of the subbasins (the Bothnian Bay) was oligotrophic, whilst the other four major subbasins were mesotrophic. Without the clarifying effect from the clay particles added to the water column during erosion of the rising seafloor, all five major subbasins of the Baltic Sea would probably be substantially more eutrophic.  相似文献   

13.
The objective of this study is to investigate the impact of a surface data assimilation (SDA) technique, together with the traditional four-dimensional data assimilation (FDDA), on the simulation of a monsoon depression that formed over India during the field phase of the 1999 Bay of Bengal Monsoon Experiment (BOBMEX). The SDA uses the analyzed surface data to continuously assimilate the surface layer temperature as well as the water vapor mixing ratio in the mesoscale model. The depression for the greater part of this study was offshore and since successful application of the SDA would require surface information, a method of estimating surface temperature and surface humidity using NOAA-TOVS satellites was used. Three sets of numerical experiments were performed using a coupled mesoscale model. The first set, called CONTROL, uses the NCEP (National Center for Environmental Prediction) reanalysis for the initial and lateral boundary conditions in the MM5 simulation. The second and the third sets implemented the SDA of temperature and moisture together with the traditional FDDA scheme available in the MM5 model. The second set of MM5 simulation implemented the SDA scheme only over the land areas, and the third set extended the SDA technique over land as well as sea. Both the second and third sets of the MM5 simulation used the NOAA-TOVS and QuikSCAT satellite and conventional upper air and surface meteorological data to provide an improved analysis. The results of the three sets of MM5 simulations are compared with one another and with the analysis and the BOBMEX 1999 buoy, ship, and radiosonde observations. The predicted sea level pressure of both the model runs with assimilation resembles the analysis closely and also captures the large-scale structure of the monsoon depression well. The central sea level pressures of the depression for both the model runs with assimilation were 2–4 hPa lower than the CONTROL. The results of both the model runs with assimilation indicate a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall compared with the CONTROL. The impact of FDDA and SDA, the latter over land, resulted in reduced errors of the following: 1.45 K in temperature, 0.39 m s−1 in wind speed, and 14° in wind direction compared with the BOBMEX buoy observation, and 1.43 m s−1 in wind speed, 43° in wind direction, and 0.75% in relative humidity compared with the CONTROL. The impact of SDA over land and sea compared with SDA over land only showed a further marginal reduction of errors: 0.23 K in air temperature (BOBMEX buoy) and 1.33 m s−1 in wind speed simulations.  相似文献   

14.
在全球变暖的背景下,南极已成为全球气候变化研究的热点,然而其区域内的观测站点稀疏且缺乏较长的时间序列,限制了人们对南极气候变化机制的分析与理解。Polar WRF作为目前最先进的极地区域气候模型之一,有力弥补了观测资料不足的缺陷,然而模式存在误差,在应用之前有必要对其定量评估。本文利用Polar WRF3.9.1对2004-2013年南极冰盖2m气温、10m风速和地表气压进行了数值模拟,并与28个气象站数据进行了对比分析,结果表明:模式对气温的模拟值在东南极沿岸偏低,在内陆偏高,在南极半岛既存在冷偏差也存在暖偏差,而对风速和气压的模拟整体呈高估。而从均方根误差和平均绝对误差的空间分布来看,模式对气温和气压的模拟结果在东南极沿岸的精度高于内陆和南极半岛,而风速则在内陆的精度要高于沿岸地区。但总体来说模拟效果较为理想,在2004-2013年间气温、风速、气压的模拟值的变化趋势与实测值的变化趋势相同。模式模拟的年平均2m气温和近地面气压在所有站点都通过了α=0.1的显著性检验,季节误差和月误差整体较小,且所有月份的相关系数都分别大于0.90与0.79。模式对10m风速的模拟精度要略低,部分沿岸站点的年平均误差超过了7.5m·s^(-1),但整体而言其在四季和各个月份的相关性均大于0.5且误差小于4.5m·s^(-1)。虽然Polar WRF作为天气模式,但在模拟长时间尺度的气候方面仍然表现较好。  相似文献   

15.
Ping Zhu 《Natural Hazards》2008,47(3):577-591
Hurricane wind damage constitutes the largest percentage of catastrophic insured losses in the US. Yet the complicated wind structures and their changes are not fully understood and, thus, have not been considered in current risk catastrophic models. To obtain realistic landfall hurricane surface winds, a large eddy simulation (LES) framework in a weather forecasting mode has been developed from a multiple nested Weather Research & Forecasting (WRF) model to explicitly simulate a spectrum of scales from large-scale background flow, hurricane vortex, mesoscale organizations, down to fine-scale turbulent eddies in a unified system. The unique WRF-LES enables the high resolution data to be generated in a realistic environment as a hurricane evolves. In this paper, a simulation of the landfalling Hurricane Katrina is presented to demonstrate various features of the WRF-LES. It shows that the localized damaging winds are caused by the large eddy circulations generated in the hurricane boundary layer. With a sufficient computational power, WRF-LES has the potential to be developed into the next generation operational public wind-field model for hurricane wind damage mitigation.  相似文献   

16.
While qualitative information from meteorological satellites has long been recognized as critical for monitoring weather events such as tropical cyclone activity, quantitative data are required to improve the numerical prediction of these events. In this paper, the sea surface winds from QuikSCAT, cloud motion vectors and water vapor winds from KALPANA-1 are assimilated using three-dimensional variational assimilation technique within Weather Research Forecasting (WRF) modeling system. Further, the sensitivity experiments are also carried out using the available cumulus convective parameterizations in WRF modeling system. The model performance is evaluated using available observations, and both qualitative and quantitative analyses are carried out while analyzing the surface and upper-air characteristics over Mumbai (previously Bombay) and Goa during the occurrence of the tropical cyclone PHYAN at the west coast of Indian subcontinent. The model-predicted surface and upper-air characteristics show improvements in most of the situations with the use of the satellite-derived winds from QuikSCAT and KALPANA-1. Some of the model results are also found to be better in sensitivity experiments using cumulus convection schemes as compared to the CONTROL simulation.  相似文献   

17.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

18.
Probability distributions of surface wind speeds (SWS) near coastal regions are needed for applications such as estimating offshore wind power and ocean surface fluxes and for offshore wind risk assessments. Ocean surface wind speed probability distribution (PDF) is characterized using three-year QuikSCAT and AIRS satellite observations in the southeast Pacific of marine stratus and stratocumulus (MSC) regions. Seasonal variation is removed from wind statistics. It was found that the observed SWS standard deviation has a linear positive relationship with its mean SWS; while the SWS skewness decreases with mean SWS in regimes of strong winds and increases with mean SWS in regimes of weak winds. A simple 1D conceptual model is developed near the Peruvian region, which successfully reproduces the observed relationship between higher moments of SWS and its mean value. The model based physical picture among ocean surface winds, SST, and marine boundary clouds are supported by three-year QuikSCAT surface wind observations and fifteen-year ERA40 re-analysis data. Model sensitive tests suggest that large-scale divergence, and strengths of momentum and cloud fluctuations have significant effects on the ocean SWS-PDF in marine stratus and stratocumulus regions.  相似文献   

19.
An attempt is made to derive wind speed from wave measurements by carrying out an inverse modeling. This requirement arises out of difficulties occasionally encountered in collecting wave and wind data simultaneously. The wind speed at every 3-h interval is worked out from corresponding simultaneous measurements of significant wave height and average wave periods with the help of alternative data-driven methods such as program-based genetic programming, model trees, and locally weighted projection regression. Five different wave buoy locations in Arabian Sea, representing nearshore and offshore as well as shallow and deep water conditions, are considered. The duration of observations ranged from 15 months to 29 months for different sites. The testing performance of calibrated models has been evaluated with the help of eight alternative error statistics, and the best model for all locations is determined by averaging out the error measures into a single evaluation index. All the three methods satisfactorily estimated the wind speed from known wave parameters through inverse modeling. The genetic programming is found to be the most suitable tool in majority of the cases.  相似文献   

20.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号