首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
ABSTRACT

Among various strategies for sediment reduction, venting turbidity currents through dam outlets can be an efficient way to reduce suspended sediment deposition. The accuracy of turbidity current arrival time forecasts is crucial for the operation of reservoir desiltation. A turbidity current arrival time (TCAT) model is proposed. A multi-objective genetic algorithm (MOGA), a support vector machine (SVM) and a two-stage forecasting technique are integrated to obtain more effective long lead-time forecasts of inflow discharge and inflow sediment concentration. The multi-objective genetic algorithm (MOGA) is applied for determining the optimal inputs of the forecasting model, support vector machine (SVM). The two-stage forecasting technique is implemented by adding the forecasted values to candidate inputs for improving the long lead-time forecasting. Then, the turbidity current arrival time from the inflow boundary to the reservoir outlet is calculated. To demonstrate the effectiveness of the TCAT model, it is applied to Shihmen Reservoir in northern Taiwan. The results confirm that the TCAT model forecasts are in good agreement with the observed data. The proposed TCAT model can provide useful information for reservoir sedimentation management during desilting operations.  相似文献   

2.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
There are two kinds of Sabo dams in order to control sediment transport by debris flow and flash floods in mountainous area, which are closed and open-type's dams. In Japan, open-type's Sabo dams are constructed taking into account the continuity of sediment routing from upstream to downstream reach in a basin. A plan to construct a 20 m high grid-type Sabo dam which can capture a sediment volume of 400,000 m3 is proposed in the Amahata river basin in Japan. Hydraulic model tests are conducted to decide on the section for a dam (Section A, B) and the grid size such as clearance of vertical/horizontal bars for evaluating the plan. Several runs of flume tests are conducted and the sediment control function of the Sabo darn is discussed using several experimental data such as dimensionless sediment runoff rate from Sabo dam, temporal changes of bed profile and mean diameter and so on. It was found that sediment deposition in sediment storage area of Sabo dam was affected by curved channel, and that next the grid size of steel bars and thirdly the section of a dam was able to capture sediment in storage area of Sabo dam. Sediment was controlled well in the section B and in the grid size of 1.0×d95, and the problems related to sediment runoffafter sediment capturing in Sabo dam are pointed out.  相似文献   

4.
《国际泥沙研究》2020,35(5):431-443
In recent years, the damage caused to human settlements in Japan by large woody debris (LWD) has been increasing. For example, the 2013 Izu Oshima typhoon resulted in a large number of fatalities and missing persons, and the Kagoshima Typhoon Disaster and Northern Kyusyu torrential downpour caused vast infrastructure damage due to the associated LWD. Current countermeasures for preventing LWD are insufficient to maintain the safety of residential areas. One type of protective barrier, the open sabo dam, has been constructed in Japan during the past 30 years. The primary function of open sabo dams is to block the flow of boulders, thereby also reducing sediment flow by reducing the gap size. However, because Japanese open sabo dams are designed specifically for boulder-trapping, the ability of these dams to trap LWD remains uncertain. In particular, many problems have been reported with respect to sediment trapping by driftwood with roots in an open sabo dam setting. The objective of this study was to examine the trapping efficiency of open sabo dams for LWD and sediment. The experimental approach clarified the influence of driftwood, without and with roots, on sediment trapping for a straight-channel flume. The flexible roots of the driftwood were shown to have a significant effect on the sediment trapping efficiency of the dam.  相似文献   

5.
Fully coupled mathematical modeling of turbidity currents over erodible bed   总被引:1,自引:0,他引:1  
Turbidity currents may feature active sediment transport and rapid bed deformation, such as those responsible for the erosion of many submarine canyons. Yet previous mathematical models are built upon simplified governing equations and involve steady flow and weak sediment transport assumptions, which are not in complete accordance with rigorous conservation laws. It so far remains unknown if these could have considerable impacts on the evolution of turbidity currents. Here a fully coupled modeling study is presented to gain new insights into the evolution of turbidity currents. The recent analysis of the multiple time scales of subaerial sediment-laden flows over erodible bed [Cao Z, Li Y, Yue Z. Multiple time scales of alluvial rivers carrying suspended sediment and their implications for mathematical modeling. Adv Water Resour 2007;30(4):715–29] is extended to subaqueous turbidity currents to complement the fully coupled modeling. Results from numerical simulations show the ability of the present coupled model to reproduce self-accelerating turbidity currents. Comparison among the fully and partially coupled and decoupled models along with the analysis of the relative time scale of bed deformation explicitly demonstrate that fully coupled modeling is essential for refined resolution of those turbidity currents featuring active sediment transport and rapid bed deformation, and existing models based on simplified conservation laws need to be reformulated.  相似文献   

6.
A three-dimensional(3D) numerical model of unstable turbidity currents is developed based on the mechanism of sediment transport and turbulence theory.In this model,numerical simulation of turbidity currents without subsequent supply of muddy water was conducted using the same parameters as were used in the flume experiments.The evolution process of turbidity currents of completely losing supplies observed in the experiment was simulated by the model;validation of the numerical model and the algorithm was conducted.If momentarily interrupted process is regarded as a special case of the gradually interrupted,based on the preceding numerical simulation validity,it is feasible to simulate the motion law of turbidity currents under losing gradually supplies.By this method in this article,the characteristic of sediment-laden flow of losing gradually supplies was obtained,as well as its relationship between front velocity and sediment concentration.  相似文献   

7.
1 INTRODUTIONTaiwan is a hilly-mountainous island lying across the center of the tropic. The slopeland accounts fortwo thirds of the total area of Taiwan. Most mountains are consisted of geologically young rocks incategories of fissile slates and shales which are easily eroded by weather. TOrrents combined with fissileslates and shales form debris flows with a very strong destrUctive power. This kind of debris flow canpotentially occur for almost all torrents whose gradient is steeper th…  相似文献   

8.
The determination of sediment yield in catchments based on the sediment trapped by check dams is becoming a subject of interest.In fact,several methods have been developed in recent years to estimate the sediment retained by check dams.The complexity,precision and accuracy of each method vary greatly.In this study,we evaluate the sediment trapped by check dams comparing the Sections method respect to the Prism,Pyramid,DTMs and Trapezoid methods.We analyzed a sample of 25 check dams(α-1=90%;ε=10%) in the Saldana badlands(Spain).The results showed that the Sections method offered a volume of retained sediment between the others,which gave an absolute variation from 22%to40%.The high variability of the check dam and sediment wedge sizes made necessary to compare methods in groups combining both characteristics.No significant differences in sediment volumes could be found between the methods for very small(height(h):1.8-2.3 m;trapped volume(V):6-102 m~3) or large check dams(h 2.3 m;V:165-387 m~3),while significant differences are found for small(h 1.5 m;V:1-229 m~3) or middle-sized check dams(h:2.2-3.2 m;V:65-235 m3).Nevertheless,volume differences between groups ranged up to + 25%.For these reason,the size of the check dam,the shape of the sediment wedge and the accuracy of the measure methods must considered when selecting an appropriate method to obtain the volume of retained sediment by check dams.A correct estimation of the sediment retention is needed to evaluate the role and efficiency of check dams in restoration projects or to estimate sediment yields.  相似文献   

9.
This study aims at gaining basic understanding about two specific phenomena that are observed in the highly turbid estuaries tidal Ouse, Yangtze and Ems, i.e. (1) the accumulation of suspended matter in the deeper parts of the estuaries and (2) the relatively high values of turbidity near the surface in the area of the turbidity maximum. A semi-analytical model is analysed to verify the hypothesis that these phenomena result from bottom slope-induced turbidity currents and from hindered settling, respectively. The model governs the dynamics of residual flow, driven by fresh water discharge, salinity gradients and turbidity gradients. It further uses the condition of morphodynamic equilibrium (no divergence of net sediment transport) to compute the residual sediment concentration. New aspects are that depth variations on flow and mixing processes, as well as flocculation and hindered settling of sediment, are explicitly accounted for. Tides act as a source of mixing and erosion of sediment only, thus processes like tidal pumping are not considered. Model results show that the estuarine turbidity maximum (ETM) shifts in the down-slope direction, compared to the case of a constant depth. Slope-induced turbidity currents, which are directed down-slope near the bottom and up-slope near the surface, are responsible for this shift, thereby confirming the first part of the hypothesis above. The down-slope shift of the ETM is reduced by currents resulting from gradients in depth-dependent mixing, which counteract turbidity currents, but which are always weaker. Including flocculation and hindered settling yields increased surface sediment concentrations in the area of the turbidity maximum, compared to the situation of a constant settling velocity, thereby supporting the second part of the hypothesis. Sensitivity experiments reveal that the conclusions are not sensitive to the values of the model parameters.  相似文献   

10.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

11.
In this paper, a systematic investigation into the effect of both the type of impervious members and the reservoir bottom sediment on the dynamic response of embankment dams has been carried out using the finite and infinite element coupled method. It has been demonstrated from the numerical results that: (1) the resonant frequencies of an embankment dam—foundation system with an upstream inclined concrete apron are different from those with a central clay core; (2) the type of impervious members has a significant influence on the amplification factors of the system in the low frequency range of excitation, but has little effect in the high frequency range of excitation; (3) the foundation material of an embankment dam affects the dynamic response of the dam drastically; (4) the inclusion of the reservoir bottom sediment has a considerable effect on amplification factors of embankment dams in the case of P-wave incidences, but has little influence in the case of SV-wave vertical incidences; and (5) the reservoir bottom sediment also has a profound effect on the deformed shape of the embankment dam for both P-wave and SV-wave incidences.  相似文献   

12.
DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS   总被引:3,自引:0,他引:3  
1 INTRODUCTION Stony debris flows are natural, highly concentrated water-sediment mixture, which forms wherever the simultaneous availability of water, debris material and an adequate slope, steeper than o10 are satisfied (Gregoretti, 2000). In mountainous regions of Taiwan, due to vast development and utilization of hills, stony debris flows are important from the point of disaster prevention, since they occur frequently and often bring about heavy loss of lives and properties. Therefo…  相似文献   

13.
《国际泥沙研究》2019,34(6):537-549
Dam removal can generate geomorphic disturbances, including channel bed and bank erosion and associated abrupt/pulsed release and downstream transfer of reservoir sediment, but the type and rate of geomorphic response often are hard to predict. The situation gets even more complex in systems which have been impacted by multiple dams and a long and complex engineering history. In previous studies one-dimensional (1-D) models were used to predict aspects of post-removal channel change. However, these models do not consider two-dimensional (2-D) effects of dam removal such as bank erosion processes and lateral migration. In the current study the impacts of multiple dams and their removal on channel evolution and sediment delivery were modeled by using a 2-D landscape evolution model (CAESAR-Lisflood) focusing on the following aspects: patterns, rates, and processes of geomorphic change and associated sediment delivery on annual to decadal timescales. The current modeling study revealed that geomorphic response to dam removal (i.e., channel evolution and associated rates of sediment delivery) in multiple dam settings is variable and complex in space and time. Complexity in geomorphic system response is related to differences in dam size, the proximity of upstream dams, related buffering effects and associated rates of upstream sediment supply, and emerging feedback processes as well as to the presence of channel stabilization measures. Modeled types and rates of geomorphic adjustment, using the 2-D landscape evolution model CAESAR-Lisflood, are similar to those reported in previous studies. Moreover, the use of a 2-D method showed some advantages compared to 1-D models, generating spatially varying patterns of erosion and deposition before and after dam removal that provide morphologies that are more readily comparable to field data as well as features like the lateral re-working of past reservoir deposits which further enables the maintenance of sediment delivery downstream.  相似文献   

14.
Risk analysis for clustered check dams due to heavy rainfall   总被引:7,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   

15.
Large dam construction for irrigation, hydropower, water supply, and flood control in tropical to sub-tropical areas increased markedly after 1950. Many of the dams built during this period have filled with sediment and no longer perform to their original design specifications; in many cases, forecast dam life was greatly overestimated. This study investigates the useful life of Burdekin Falls Dam (BFD), northeastern Australia and compares the findings with other tropical reservoirs. Using two independent methods it is estimated that between 61 and 65 million m3 of sediment has been deposited in the reservoir over the 24 years of operation through 2011. This sediment volume equates to an average of 0.15% of capacity lost per year since construction was completed. If current sediment loads/climate regimes persist, reservoir capacity will be reduced by 50% after 345 years. However, the useful life of the BFD reduces to just 276 years when drawdown data are considered; these data show reservoir use would be affected once 40% of storage was filled with sediment, with a 60% drawdown return period of 1 in 15 years. When compared to similar large tropical to sub-tropical reservoirs, the BFD has a slightly longer reservoir useful life than dams in India and a much longer half-life than for both similar-sized and larger dams in China, Brazil, and Iran. Properties of the BFD that promote a longer useful life include a lower trap efficiency, relatively low annual sediment load delivered to the reservoir, limited sediment deposition behind the dam wall (and uniform distribution of deposited sediment), and the export of highly turbid annual floodwaters before settling and deposition of any remaining sediment within the reservoir.  相似文献   

16.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Dam removal has been demonstrated to be one of the most frequent and effective fluvial restoration actions but at most dam removals, especially of small dams, there has been little geomorphological monitoring. The results of the geomorphological monitoring implemented in two dams in the rivers Urumea and Leitzaran (northern Spain) are presented. The one from the River Urumea, originally 3.5 m high and impounding 500 m of river course, was removed instantaneously whereas that in the River Leitzaran, 12.5 m high, and impounding 1500 m of river course, is in its second phase of a four‐stage removal process. Changes in channel morphology, sediment size and mobility and river bed morphologies were assessed. The monitoring included several different techniques: topographical measurements of the channel, terrestrial laser scanner measurements of river bed and bars, sediment grain size and transport; all of them repeated in four (May, August, November 2011 and May 2012) and five (July and September 2013, April and August 2014 and June 2015) fieldwork campaigns in the River Urumea and River Leitzaran, respectively. Geomorphic responses of both dam removals are presented, and compared. Morphological channel adjustments occurred mainly shortly after dam removals, but with differences among the one removed instantaneously, that was immediate, whereas that conducted by stages took longer. Degradational processes were observed upstream of both dams (up to 1.2 m and 4 m in the River Urumea and River Leitzaran, respectively), but also aggradational processes (pool filling), upstream of Inturia Dam (2.85 m at least). Less evident aggradational processes were observed downstream of the dams (up to 0.37 m and 0.50 m in the River Urumea and River Leitzaran, respectively). Flood events, especially a 100 year flood registered during the monitoring period of Mendaraz Dam removal, reactivated geomorphological processes as incision and bank erosion, whereas longitudinal profile recovery, grain‐size sorting and upstream erosion took longer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Data from 10 small farm dams in SE Australia show that shoreline erosion due to farm livestock access to the dams can account for a significant proportion (up to 85%) of sediment contained in the dam. The volumes of sediment resulting from such shoreline erosion may be of the same order as the volumes produced by gully erosion in the dams' catchments, prompting caution in using farm dams to which livestock have access to determine small catchment erosion rates. Other issues, related to the trap efficiency, also mean that erosion estimates based on farm dam sedimentation should be treated with caution. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Previous quantitative studies of field-scale cyclic steps are mostly based on analysis of field data. Such studies have shed light on the erosion/deposition patterns over these morphological features as well as the magnitudes of the turbidity current parameters back estimated using the measured geometry data. However, it remains unclear to what extent such back estimated hydraulic features and erosion/deposition patterns can be numerically reproduced by process-based numerical models. Here, a tw...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号