首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Understanding the linkage between temporal climate variability and groundwater nitrate concentration variability in monitoring well records is key to interpreting the impacts of changes in land-use practices and assessing groundwater quality trends. This study explores the coupling of climate variability and groundwater nitrate concentration variability in the Abbotsford-Sumas aquifer. Over the period of 1992–2009, the average groundwater nitrate concentration in the aquifer remained fairly steady at approximately 15 mg/L nitrate-N. Normalized nitrate data for 19 individual monitoring wells were assessed for a range of intrinsic factors including precipitation, depth to water table, depth below water table, and apparent groundwater age. At a broad scale, there is a negative correlation between nitrate concentration and apparent groundwater age. Each dedicated monitoring well shows unique, non-uniform cyclical variability in nitrate concentrations that appears to correspond with seasonal (1 year) cycles in precipitation as well as longer-period cycles (~5 years), possibly due to ENSO (El Niño Southern Oscillation) or the Pacific North American (PNA) pattern. These precipitation cycles appear to influence nitrate concentrations by approximately ±30 % of the critical concentration (10 mg/L NO3–N). Not all wells show direct correlation due to many complex local-scale factors that influence nitrate leaching including spatially and temporally variable nutrient management practices and soil/crop nitrogen dynamics (anthropogenic and agronomic factors).  相似文献   

2.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

3.
Groundwater residence time in the Kulnura–Mangrove Mountain aquifer was assessed during a multi-year sampling programme using general hydrogeochemistry and isotopic tracers (H2O stable isotopes, δ13CDIC, 3H, 14C and 87Sr/86Sr). The study included whole-rock analysis from samples recovered during well construction at four sites to better characterise water–rock interactions. Based on hydrogeochemistry, isotopic tracers and mineral phase distribution from whole-rock XRD analysis, two main groundwater zones were differentiated (shallow and deep). The shallow zone contains oxidising Na–Cl-type waters, low pH, low SC and containing 3H and 14C activities consistent with modern groundwater and bomb pulse signatures (up to 116.9 pMC). In this shallow zone, the original Hawkesbury Sandstone has been deeply weathered, enhancing its storage capacity down to ~50 m below ground surface in most areas and ~90 m in the Peats Ridge area. The deeper groundwater zone was also relatively oxidised with a tendency towards Ca–HCO3-type waters, although with higher pH and SC, and no 3H and low 14C activities consistent with corrected residence times ranging from 11.8 to 0.9 ka BP. The original sandstone was found to be less weathered with depth, favouring the dissolution of dispersed carbonates and the transition from a semi-porous groundwater media flow in the shallow zone to fracture flow at depth, with both chemical and physical processes impacting on groundwater mean residence times.

Detailed temporal and spatial sampling of groundwater revealed important inter-annual variations driven by groundwater extraction showing a progressive influx of modern groundwater found at >100 m in the Peats Ridge area. The progressive modernisation has exposed deeper parts of the aquifer to increased NO3? concentrations and evaporated irrigation waters. The change in chemistry of the groundwater, particularly the lowering of groundwater pH, has accelerated the dissolution of mineral phases that would generally be inactive within this sandstone aquifer triggering the mobilisation of elements such as aluminium in the aqueous phase.  相似文献   

4.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

5.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

6.
The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.  相似文献   

7.
The recharge processes in the overexploited aquifer of the Silao Romita basin, central Mexico, were investigated by means of gaseous tracers (chlorofluorocarbons, CFCs) and radioactive isotopes (C-14, tritium). CFC concentrations varied between 0.06 and 12 pmol/l (CFC-11), 0.03 and 1.7 pmol/l (CFC-12), and <0.01 and 0.23 pmol/l (CFC-113). CFC concentrations are controlled by irrigation return flow which became apparent by the comparison with tritium. Tritium activities ranged from 0 to 3.5 TU. The calculated mean residence times of 70 to more than 300 years are considerably lower than the ages estimated based on the CFCs data. These data showed that CFCs were not appropriate for groundwater dating in this particular area but the CFCs were suitable as a qualitative measure of the magnitude of irrigation return flow which proved to be a significant source of recharge in the irrigated areas. Radiocarbon activities were in the range of 6–109 pmC. Carbon-13 values varied between –11.9 and –7.2‰ VPDB. Modelling of carbon isotopes with NETPATH along a plausible flow path reveals considerable influences of exchange with soil CO2 and carbonate dissolution. Radiocarbon data indicate, at least in one case, the existence of groundwaters with residence times of more than 10,000 years.  相似文献   

8.
Hydrogeochemistry and environmental isotope data were utilized to understand origin, geochemical evolution, hydraulic interconnection, and renewability of groundwater in Qingshuihe Basin, northwestern China. There are four types of groundwater: (1) shallow groundwater in the mountain front pluvial fans, originating from recent recharge by precipitation, (2) deep paleo-groundwater of the lower alluvial plains, which was formed long ago, (3) shallow groundwater in the lower alluvial plains, which has undergone evaporation during the recharge process, and (4) mixed groundwater (shallow and deep groundwater in the plain). The main water types are Na–HCO3, which dominates type (1), and Na–SO4, which dominates types (2) and (3). Geochemical evolution in the upper pluvial fans is mainly the result of CO2 gas dissolution, silicates weathering and cation exchange; in the lower alluvial plains, it is related to mineral dissolution. The evaporative enrichment only produces significant salinity increases in the shallow groundwater of the lower alluvial plains. Shallow groundwater age in the upper plain is 10 years or so, showing a strong renewability. Deep groundwater ages in the lower plain are more than 200 years, showing poor renewability. In the exploitation areas, the renewability of groundwater evidently increases and the circulation period is 70–100 years.  相似文献   

9.
Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand??s national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.  相似文献   

10.
Pollution of groundwater in the Bengal Basin (Bangladesh and West Bengal, India) by arsenic (As) puts at risk the health of more than 100 million consumers. Using 1,580 borehole lithological logs and published hydrochemistry on 2,387 wells, it was predicted that low-As (<10 μg/L) groundwater exists, in palaeo-interfluvial aquifers of brown sand capped by a protective palaeosol, beneath at least 45,000 km2 of the Bengal Basin. The aquifers were predicted to be at a depth of as little as 25 m below ground level (mbgl), and typically no more than 50 mbgl. The predictions were confirmed along an east–west traverse 115 km in length (i.e. across half of Bangladesh) by drilling 28 new boreholes to 91-m depth to reveal subsurface sedimentology, and by mapping As distribution in groundwater. The aquifers identified occur at typically <40 mbgl and so are accessible with local drilling methods. A protective palaeosol that caps the palaeo-interfluvial aquifers prevents downward movement into them of As-polluted groundwater present in shallower palaeo-channel aquifers and ensures that the palaeo-interfluvial aquifers will yield low-As groundwater for the foreseeable future. Their use, in place of the shallower As-polluted palaeo-channel aquifers, would rapidly mitigate the health risks from consumption of As-polluted groundwater.  相似文献   

11.
Characterization of a Pleistocene thermal spring in Mozambique   总被引:1,自引:1,他引:0  
A hydrogeological study was conducted with the objective to investigate the only currently known hot spring of Sofala Province in Mozambique with respect to the origin of the water, the discharge, and its chemical composition. Field investigations comprised a general land use survey, mapping of sediment and water temperatures, discharge measurements and on-site water chemistry as well as sampling for further chemical analyses and groundwater dating. Thermal water discharge occurs along a 100 m long NE–SW zone with water temperatures ranging from 42 to 64.5°C. The thermal water is a low-mineralized sodium-chloride-sulfate water enriched in phosphate, fluorine and nickel. The silica geothermometer, the silica concentration of 43 mg/kg and the ratios of Br/Cl and I/Cl of 2.5?×?10–3, suggest that the thermal water stems from approximately 5,000 m depth and had a long residence time with silicate rocks. This points towards Gorongosa Mountain as the water source area. 14C dating suggests a groundwater age of 11,000 years.  相似文献   

12.
 The supraregional GIS-supported stochastical model, WEKU, for the determination of groundwater residence times in the upper aquifers of large groundwater provinces is presented. Using a two-dimensional analytical model of groundwater flow, groundwater residence times are determined within two extreme cases. In the first case, maximal groundwater residence times are calculated, representing the part of groundwater, that is drained by the main surface water of a groundwater catchment area. In the second case, minimal groundwater residence times for drainage into the nearest surface water are determined. Using explicit distribution functions of the input parameters, mean values as well as potential ranges of variations of the groundwater residence times are derived. The WEKU model has been used for the determination of groundwater residence times throughout Germany. The model results – mean values and deviations of the groundwater velocity and the maximal and minimal groundwater residence times in the upper aquifers – are presented by general maps and discussed in detail. It is shown that the groundwater residence times in the upper aquifer vary regionally, differentiated between less than 1 year and more than 2000 years. Using this information, the time scales can be specified, until measures to remediate polluted groundwater resources may lead to a substantial groundwater quality improvement in the different groundwater provinces of Germany. With respect to its supraregional scale of application, the WEKU model may serve as a useful tool for the supraregional groundwater management on a state, federal or international level. Received: 15 August 1995 · Accepted: 15 October 1995  相似文献   

13.
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. ‘Semi-arid’ (500–800 mm of mean annual rainfall), ‘sub-humid’ (800–1,200 mm/year) and ‘humid’ (1,200–1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<±5 %), EC versus TZ+ (~0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is ‘hard’ to ‘very hard’ in terms of Ca–Mg hardness. Polluted wells are identified (>40 % of pollution) and eliminated for the characterization. Piper’s diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl ~14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration–depth profiles are in support of the geological stratification i.e., ~18 m of saprolite and ~25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into ‘deep’ and ‘shallow’ based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using ‘recharge–discharge’ concept based on rainfall intensity instead of traditional monsoon–non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge–discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.  相似文献   

14.
The distribution of radon in ground and surface water samples in Sankey Tank and Mallathahalli Lake areas was determined using Durridge RAD-7 analyzer with RAD H2O accessory. The radiation dose received by an individual falling under different age groups (viz., 3 months; 1, 5, 10, 15 years and adult) depending upon their average annual water consumption rate was attempted. The mean radon activity in surface water of Sankey Tank and Mallathahalli Lake was 7.24 ± 1.48 and 11.43 ± 1.11 Bq/L, respectively. The average radon activities ranged from 11.6 ± 1.7 to 381.2 ± 2.0 Bq/L and 1.50 ± 0.83 to 18.9 ± 1.59 Bq/L, respectively, in 12 groundwater samples each around Sankey Tank and Mallathahalli Lake areas. Majority of the measured groundwater samples (viz., 100 % in Sankey Tank area and 75 % in Mallathahalli Lake area) showed mean radon values above the EPA’s maximum contaminant level of 11.1 Bq/L and only 66.67 % of samples in Sankey Tank area showed radon above the WHO and EU’s reference level of 100 Bq/L. The overall radiation dose due to radon emanating from water in the study area was increasing with increase in age and water consumption rates, but significantly lower than UNSCEAR and WHO recommended limit of 1 mSv/year except for few groundwater samples in Sankey Tank area (i.e., 0.92, 0.99 and 1.39 mSv/year). The radiation dose rate received by bronchial epithelium via inhalation was very high compared to that by stomach walls via ingestion.  相似文献   

15.
Although shallow groundwater (<50 mbgl) sustains the vast majority of improved drinking-water supplies in rural Africa, there is little information on how resilient this resource may be to future changes in climate. This study presents results of a groundwater survey using stable isotopes, CFCs, SF6, and 3H across different climatic zones (annual rainfall 400–2,000 mm/year) in West Africa. The purpose was to quantify the residence times of shallow groundwaters in sedimentary and basement aquifers, and investigate the relationship between groundwater resources and climate. Stable-isotope results indicate that most shallow groundwaters are recharged rapidly following rainfall, showing little evidence of evaporation prior to recharge. Chloride mass-balance results indicate that within the arid areas (<400 mm annual rainfall) there is recharge of up to 20 mm/year. Age tracers show that most groundwaters have mean residence times (MRTs) of 32–65 years, with comparable MRTs in the different climate zones. Similar MRTs measured in both the sedimentary and basement aquifers suggest similar hydraulic diffusivity and significant groundwater storage within the shallow basement. This suggests there is considerable resilience to short-term inter-annual variation in rainfall and recharge, and rural groundwater resources are likely to sustain diffuse, low volume abstraction.  相似文献   

16.
Data for the Waimea Plains, New Zealand indicate that the lower confined groundwater aquifer is hydraulically homogeneous and that shallow groundwater levels inland are affected mostly by anthropogenic processes, while those near the coast are affected more by sea level variation. Analysis of long-term data for New Zealand indicates that sea level has increased continuously, but trends are not spatially uniform. Results from non-parametric trend analysis show that rising trends for groundwater levels are predominant in the shallow aquifer both inland on the Waimea Plains and, for recent years, near the coast, while decreasing trends are evident in the underlying confined aquifer near the coast. Groundwater level change in the shallow aquifer appears to be more affected by climate change than the lower confined aquifer. Correlation analysis indicated that groundwater levels are more affected by rainfall during the rainy season than the dry season and more influenced by rainfall inland than near the coast. Groundwater level declines in the lower confined aquifer near the coast, which has its major recharge area inland in the catchment, may be substantially affected by groundwater abstraction in inland areas as well as sea level variation, but there are little evidences of seawater intrusion. Meanwhile, groundwater recharge over the catchment area has great influence on rising groundwater levels in the shallow aquifer and its recharge is estimated to be 417.8 mm/year using chloride concentrations of precipitation and groundwater.  相似文献   

17.
The lower reaches of Tarim River in the Xinjiang Uygur region of western China had been dried out for more than 30 years before water began to be diverted from Konqi (Peacock) River via a 927-km-long channel in year 2000, aimed at improving the riparian ecological systems. Since then, eight intermittent water deliveries have been carried out. To evaluate the response of riparian vegetation to these operations, the groundwater regime and vegetation changes have been monitored along the 350-km-long stem of the river using a network of 40 dug wells at nine transects across the river and 30 vegetation plots at key sites. Results show that the water table rose remarkably, i.e. from a depth of 9.87 m before the water delivery to 3.16 m after the third water delivery. The lateral distance of affected water table extended to 1,050 m from the riverbank after the fourth water delivery. The riparian vegetation has changed in composition, type, distribution, and growing behavior. This shows that the water deliveries have had significant effects on restoration of riparian ecosystems.  相似文献   

18.
The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na–NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca–HCO3, Ca–NO3, and Na–NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L?1 NO3–N (8 meq L?1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.  相似文献   

19.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

20.
Changes of stomatal conductance (g s), net photosynthetic rates (P N) and water use efficiency (WUE) were investigated in Populus euphratica grown on sites with different groundwater depths (GDs) under two CO2 concentrations in the lower reaches of Tarim River, Xinjiang, northwestern China. P N in P. euphratica only slightly decreased when the groundwater depth increased from 4.12 to 7.74 m below the ground surface. P N values significantly increased in response to an elevated CO2 concentration at all GDs except at GD of 4.12 m for its good availability of groundwater. WUE values decreased with an initial increase in the groundwater depth, but increased when the groundwater depth reached 7.74 m especially under the elevated CO2 concentration. The g s values measured at 4.12 and 4.74 m both decreased indistinctively by only 3% due to CO2 enrichment; however, when GDs increased to 5.54 and 7.74 m, the g s values decreased significantly by about 10%. It shows that the response of g s in P. euphratica to elevated CO2 is weaker under lower groundwater depth (mild drought stress) but stronger under deeper groundwater depth (moderate drought stress). Results from this study suggest that groundwater depth could determine the response of photosynthesis to future CO2 enrichment in P. euphratica in arid desert areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号