首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Apollo-17 mare basalt (70017-291) was quantitatively analyzed for Ca, Ti, Cr,In, Fe, etc. by proton-exciting X-ray analysis technique. A comparison of the analytical results with those determined on Apollo-11 and Apollo-12 mare basalt samples.  相似文献   

2.
The basalt terrain of the Neogene Huangguoshan and. Guiwu Formations of eastern Anhui on the east side of the Tancheng-Lujiang fault belt is one of a few Cenozoic basalt terrains in eastern China for which detailed geochemical study has not been conducted. This paper reports the abundances of major elements and more than 20 trace elements (including REE) of 22 samples and the Nd, Sr and Pb isotopic compositions of 11 samples from the eastern Anhui basalt terrain, thus more or less systematically revealing the geochemical characteristics of this continental basalt suite. The paper discusses the origin of the basalt suite and the character and process of its mantle source. The basalt suite was derived from a heterogeneous continental lithospheric mantle with end members characteristic of the EMI-type oceanic basalt mantle, which was affected by mantle metasomatism (or enrichment of trace elements) and was characterized by a multi-stage evolution under open conditions.  相似文献   

3.
The results of Moessbauer study of Apollo-17 Mare basalt are reported in this paper.It has been revealed that Fe in iron.bearing minerals in the basalt is almost present in the form of Fe^3 , with Fe^3 less than 3% of total iron. The site occupancy of Fe^3 ions at M1 and M2 is approximately 0.3 and the corresponding equilibrium constant K (T) is about 0.06, thus indicating that the mare basalt is formed through crystallization under high-temperature reducing and rather slow cooling conditions.  相似文献   

4.
Chemical, petrological and mineralogical studies on 70017-291 Mare basalt indicate that the mare basalt belongs to Type B of A-17 basalts with a texture of plagioclasepoikilitic ilmenite basalt. The mean chemical composition of this basalt is as follows:SiO2 39.01, TiO2 11.32, Al2O3 9.24, FeO 18.52, MgO 8.61, CaO 10.86 (%). INAA measurements were made on the basalt for major, minor and trace elements. Seven pyroxene grains in the Apollo 17 were also analyzed by microprobe. They show two compositions, one for pigeonite, and the other for augite-subcalicaugite. The mean composition of pigeonite is Wo10.85, En59.33 Fs30, and that of augite-subcalic augite Wo25 En41.5Fs38.3. Plagioclase grains have a composition ranging from An30 to An96. The plagioclase contains detectable iron (averaging 0.74%), potassium (0.089% in average) and titanium(averaging 0.16%). The mean composition of ihnenite is TiO2 53.98%, FeO 41.02%,Al2O3 0.21%, MgO 2.41%, Cr2O3 0.74%. The Ti-high mare basalt (70017-291) was formed by partial melting of the early cumulates through assimilation and migmatization. On the whole, mare basalts seem to be of multigenesis.  相似文献   

5.
The Dachang antimony deposit in Qinglong,Guizhou Province,is strictly controlled by the “Dachang Layer” which is a complex altered rock occurring at unconformity between the Permian Emeishan basalt and the Maokou limestone.Based on the studies of the hanging-and foot-wall rocks,the trace elements and REE contents of the rocks and ores and heavy placer minerals in the basalt,this paper is focused on the relations between these data and the “Dachang Layer”and its hanging- and oot-wall rocks.The author pointed out that the “Dachang Layer” and basalt are the source-beds of antimony;ilmenite and magnetite are the major mineral carriers of antimony.In the processes of halmyrosis and burial metamorphism of the “Dachang Layer” an basalt,antimony was mobilized along with the mobilization of iron and was preliminarily concentrated in the“ Dachang Layer”.  相似文献   

6.
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province. The Longtan Formation contains abundant basalt, tuff and siliceous rocks. All rocks of the Long-tan Formation are enriched in gold, which were deposited in a limited platform environment in the transition zone from marine to continental. The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west, which led to the formation of a peculiar gold-bearing formation with coal series strata. This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province. In response to the remobilization of the Emei mantle plume during the Yanshanian period, As, Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams, thereafter forming ore-forming hydrothermal solutions. When these elements were transported in the coal seams, large amounts of As, Au and other elements were enriched in pyrite within the coal seams, thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.  相似文献   

7.
This work is intended to explore a fast and effective apoproach to the determination of various trace elements in geological samples throuth improvement and simplification of the method developed by Reynolds (1963,1967),Absorption correction was made for the Fe content to eliminate the effect caused by inconsistency in mass absorption coefficients among the samples.A computer-aid regression analysis was performed on a number of standards of various compositions,which resulted in a set of calibration equations for directly converting X-ray intensities to concentrations.An analytical error of 10-30% was involved in the analyses of most elements.  相似文献   

8.
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.  相似文献   

9.
Lithium separation technique for three reference materials has been established together with precise determination of lithium isotope using a Neptune multi collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). The solutions of lithium element standard reference materials, potassium, calcium, sodium, magnesium and iron single element, were used to evaluate analytical methods applied. Three separate stages of ion-exchange chromatography were carried out using organic cation-exchange resin (AG 50W-X8). Lithium was enriched for the three stages using different eluants, which are 2.8 M HCl, 0.15 M HCl and 0.5 M HCl in 30% ethanol, respectively. The columns for the first and second stages are made of polypropylene, and those for the third stage are made of quartz. Total reagent volume for the entire chemical process was 35 mL for three reference materials. The recovery yielded for the three stages is 98.9–101.2% with an average of 100.0%, 97.6–101.9% with an average of 99.9%, and 99.8–103.3% with an average of 100.6%, respectively. The precision of this technique is conservatively estimated to be ±0.72–1.04‰ (2σ population), which is similar to the precision obtained by different authors in different laboratories with MC-ICP-MS. The δ7Li values (7Li/6Li relative to the IRMM-016 standard) determined for andesite (AGV-2) and basalt (BHVO-2) are 5.68‰ (n=18), 4.33‰ (n=18), respectively. The δ7Li value (7Li/6Li relative to the L-SVEC standard) determined for IRMM-016 is –0.01‰ (n=15). All these analytical results are in good agreement with those previously reported. In addition, the results for the same kinds of samples analyzed at the MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, are consistent with those obtained at the Plasma Laboratory, University of Maryland, within analytical uncertainty. According to these experiment results, it is concluded that this proposed procedure is a suitable method for determining the lithium isotopic composition of natural samples.  相似文献   

10.
Holocene basaltic rocks of the Jingpohu area are located in the "Crater Forest" and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, their petrological characteristics are very different: alkaline olivine basalt without any megacrysts in the former, and leu-cite tephrite with Ti-amphibole, phlogopite and anorthoclasite megacrysts in the latter. On the basis of their geo-chemical characteristics, the two types of basaltic rocks should belong to weakly sodian alkaline basalts. But leucite tephrite is characterized by higher Al2O3, Na2O and K2O, higher enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), lower MgO and CaO, compatible elements and moderately compatible elements and lower Mg# values and Na/K ratios in comparison with alkaline olivine basalt. However, the two types of basaltic rocks have similar Sr, Nd, Pb isotopic compositions, which suggests that the mantle beneath the Jingpohu  相似文献   

11.
Based on the temporal-spatial distribution and geochemical characteristics, the Emeishan basalts can be divided into two types: high-P2O-TiO2 basalt (HPT) and low-P2O5-TiO2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterized by relatively high abundances of MgO, total FeO and P2O5 and compatible elements (Cr, Ni, Sc), and relatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and other incompatible elements compared with the HPT. On the diagrams of trace element ratios, they are plotted on an approximately linear mixing line between depleted and enriched mantle sources, suggesting that these two types of basalts resulted from interactions of varying degrees between mantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole and apatite. The source region of the LPT involves a smaller proportion of lithospheric components, while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated by pa  相似文献   

12.
<正>1 Introduction Lunar mare basalts represent the products of partial remelting of deep mantle sources and provide windows into the compositions of lunar interior.Nine Apollo andLuna missions returned large amounts of mare basaltic samples,while remote sensing suggests that sampled basalts may cover only a small number of the lunar basalt  相似文献   

13.
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene.  相似文献   

14.
Standard reference material and different geological samples were dissolved by system A (the mixture of nitric and perchloric acids) and system B (mixture of nitric, perchloric and hydrofluoric acids), and total Se in all samples was measured by hydride-generation atomic fluorescence spectrometry (HG-AFS) after concentration with thiol cotton fiber (TCF). The analytical results obtained by the two digestion method are in good agreement (within the limit of errors) for most of the samples, particularly for those having recommended values. The Se concentrations determined by the two methods are of no difference, and the correlation coefficient is 0.9986; the relative standard deviation (RSD) for the determination of 0.04 μg/g Se is 10.2%. The recovery rates of systems A and B by the standard-addition method were 96%-106% and 99%-104%, respectively.  相似文献   

15.
This paper discusses the discrimination principles. deduction and methods for probing into the source composition of mantle-derived magma. The magmatophile (incompatible) source elements are not all optimal tracers for mantle source composition. The ratios of two strong magmatophile elements (D<1) or the ratios of two trace elements with the same D value are not controlled by the formation mode and evolution degree of a magma, but maintain the characteristics of their composition in mantle source region prior to the magma formation. The ratios are related to different mantle-crust structures and dynamics. The mantle source composition of the Emeishan Basalt series is similar to that of the South Atlantic Rio Grande Rise-Walvis Ridge Basalts and Brazil continental-margin basalts. This may indicate that these basalt series might have similar source regions and tectonic environments.  相似文献   

16.
Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly k  相似文献   

17.
The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt.The Shaquanzi Formation comprises mainly basalt,andesite/andesitic tuff,rhyolite and sub-volcanic diabase with local diorite intrusions.The volcanic rocks and diorites contain ca.315-305 Ma and ca.298 Ma zircons respectively.These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements(LILEs),light rare-earth elements(LREEs),and depletion in high field strength elements(HFSEs)in primitive mantle normalized multi-element diagrams,which resemble typical back-arc basin rocks.They show depleted mantle signature with ε_(Nd)(t)ranging from+3.1 to +5.6 for basalt;+2.1 to+4.7 for andesite;-0.2 to+1.5 for rhyolite and the ε_(Hf)(t)ranges from-0.1 to +13.0 for andesites;+5.8 to +10.7 for andesitic tuffs.We suggest that the Shaquanzi Formation basalt might have originated from a depleted,metasomatized lithospheric mantle source mixed with minor(3-5%)subduction-derived materials,whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma.The Shaquanzi Formation volcanic rocks could have formed in an intracontinental back-arc basin setting,probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif.The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian,marked by the emplacement of dioritic magma in the Shaquanzi belt.  相似文献   

18.
The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions.  相似文献   

19.
The origin of PGEeCueNi sulfide deposits of Norilsk and Talnakh located in the northwest flank of the Triassic basalt trap formation of Siberia is considered. It is shown that ore elements of these deposits (probably, except Fe) are derived from the crust rather than from the mantle. They entered the basalts owing to a remobilization (recycling) of ore elements from the Paleoproterozoic sediments and from the rocks of the Siberian platform’s basement. Prospecting criteria for similar deposits are as follows: (1) a presence of a large Paleoproterozoic aulacogen and a related magmatic sulfide CueNi mineralization; (2) a confinement of perspective areas to troughs associated with long-lived deep fault zones; (3) association with mobile orogenic belts, island-arc systems and tectonomagmatic activation zones; (4) temporal association with boundaries of global periods characterized by active processes of continental breakup and large-scale trap magmatism. A combination of several factors (the first one is obligatory) is favorable for the discovery of a large ore body.  相似文献   

20.
Black shale samples were collected from Chimiari Khyber Pakthunkhawa region of Pakistan and were analyzed for elemental compositions. Atomic Absorption Spectrophotometry (AAS) was utilized for the determination of elements in the digested solutions. The analysis of black shale was performed precisely with relative standard deviation (RSD) lower than 2%. Results showed that the samples contained high concentrations of Ca (11.98 %), Al (7.09%), Fe (3.03%), Mg (0.59%) and Ti (0.58%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号