首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed the molecular cloud NGC 2023 in the NH3 rotation-inversion lines NH3(1.1) and NH3(2.2). The hyperfine structures shown in these lines can be advantageously used to derive the physical parameters of the cloud. We re-confirm that the star HD 37903 is the unique exciting source of the cloud and heated dust is the exciting medium. Analysis leads to the conclusion that the star is located on the periphery of the cloud, as in Zuckerman's “blister” model. If HD 37003 originated in NGC 2023, then the star will have existed long enough to blow away the molecular cloud to a distance of 0.1 pc. There may exist clumps of relatively high density in the cloud.  相似文献   

2.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

3.
We analysed the emission spectra of solar prominences using the complete linearization method [5] and found simultaneously the optical depth at the line centre τ0, the doppler width of the line ΔλD and the damping width a. The results show 1) that the complete linearization method has a larger radius of convergence, 2) that we must consider the variation of the source function with depth, when determining τ0, and 3) that the calculated values of the damping constant for the H, Hβ of hydrogen and H and K lines of Calcium are all much greater than the theoretical values from doppler broadening and radiation damping, showing that other mechanisms besides these two also contribute to the broadening of prominence lines.  相似文献   

4.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

5.
Co-ordinated rocket measurements of the O2(a1Δg−X3Σg) Infrared Atmospheric (0-0) band emission profile and the atomic oxygen densities in an undisturbed night-time atmosphere are used to investigate the processes responsible for the excitation of O2(a1Δg) in the terrestrial nightglow. It is shown that three-body recombination of atomic oxygen, and subsequent energy transfer processes, can explain only part of the observed emission profile and that at least two other sources of O2(a1Δg) emission must exist. One of these additional sources, responsible for most of the emission observed below 90km, is identified as arising from the night-time residual of the very large dayglow 1Δg population. The other additional source is required to explain most of the emission observed above 95km. The processes responsible for this high altitude component cannot be identified but the vertical distribution of the required source function strongly resembles the profile of the atomic oxygen density squared and suggests that a two-body radiative recombination process may be involved. However, the measured zenith emission rates can also be explained without the high altitude source of O2(a1Δg) if optical emission at 1.27 μm was induced by the rocket as it penetrated the nightglow layer.  相似文献   

6.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

7.
Our identification of absorption systems in the quasars OQ 172, [4,6], has reliably determined one such at z = 3.3528 supported by the hydrogen lines L-L. Analysis shows it to be a primitive hydrogen cloud formed after the big bang. Assuming no broadening due to damping, we found a Doppler width b = 55 km/s and a column density 1g NH = 14.66 from the curve of growth.  相似文献   

8.
The effects of the hyperfine structure (HFS) that is present in some interstellar absorption lines are investigated in the case of a single absorbing cloud. If the respective total equivalent widths of two or more unresolved HFS multiplets measured in relatively low-resolution spectra are analysed specifically by means of a curve of growth, the column density N (X) and the linewidth parameter b (X) inferred for absorbing species X in the cloud will generally be in error if the HFS is ignored. The fundamental physical effect is the reduced line saturation that arises because the total column density is divided among the HFS levels of the ground atomic level, each of which generally gives rise to an HFS line at a different wavelength. For nuclear spins   I = 3/2  and   I = 5/2  , theoretical curves of growth are calculated for some of the resonance lines of some alkali atoms, for each of four illustrative choices of the parameter  α=Δ/ b   , the ratio of the HFS splitting in the ground atomic level to the linewidth. Applications of the results to interstellar absorption by Na  i , K  i and Al  iii are emphasized. HFS is, fortunately, unimportant for most interstellar lines, however. Among the 35 elements that have been detected in diffuse clouds via interstellar absorption in the ultraviolet/optical spectral region, the most abundant isotope of each of 25 of these shows no HFS, because   I = 0  or, in the relevant ground atomic level,   J = 0  .  相似文献   

9.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

10.
We present VLA observations of the ( J , K )=(1, 1), (2, 2), (3, 3) and (4, 4) inversion transitions of NH3 toward the HW 2 object in Cepheus A, with 1-arcsec angular resolution. Emission is detected in the main hyperfine line of the first three transitions. The NH3(2, 2) emission shows a non-uniform 'ring' structure, which is more extended (3 arcsec) and intense than the emission seen in the (1, 1) and (3, 3) lines. A rotational temperature of ∼ 30–50 K and a lower limit to the mass of ∼ 1 ( X NH3/10−8)−1 M are derived for the ring structure. The spatio-kinematical distribution of the NH3 emission does not seem to be consistent with a simple circumstellar disc around the HW 2 thermal biconical radio jet. We suggest that it represents the remnant of the parental core from which both the inner 300-au (0.4 arcsec) disc, traced by the water maser spots previously found in the region, and the central object have formed. The complex velocity field of this core is probably produced from bound motions (similar to those of the inner disc) and from interaction with outflowing material.  相似文献   

11.
We have determined for the first time a spectroscopic orbit for WX Cnc. The orbital elements are V0 = +9.8 km/s, k1 = 110.2 km/s, K2 = 149.0 km/s, To = HJD 2446 480.0309. After combining with the published photometric results, we derive the the following absolute parameters: A = 6.32R, R1 = 1.53R, R2=1.18R, M1 = 1.29 M, M2 = 0.96M. The spectroscopic mass-ratio is q = 0.74.  相似文献   

12.
Through an analysis of the optical and radio rotation curves of 57 galaxies, the following conclusions are drawn. 1) As we go from early-type to late-type along the Hubble sequence, dynamical quantities characterizing the structure and rotation show systematic variations. The bulge-to-disk mass-ratio decreases, the peak velocity Vm decreases, the period at the peak-velocity-point Pm increases, the peak-velocity-radius rm shifts outward relative to the optical Holmberg radius rH, the spiral arms become more loosely-wound and the galaxy flattens. 2) Within a given morphological type, the dispersion in each of the dynamical quantities is related to the mass, the more massive galaxies have larger Vm and rm and small k (= Vm2/rm) and β (= rH/rm.3) another important factor in influencing the dynamical state of a galaxy and, within a morphological type, the tidal galaxies have greater k and β and smaller rm.  相似文献   

13.
We used the 13.7 m millimeter-wave telescope of the Qinghai Station of Purple Mountain Observatory at Delingha to carry out simultaneous mapping observations in the 12CO(J = 1 − 0), 13CO(J = 1 − 0) and CO18 (J = 1 − 0) lines towards 11 isolated star-forming molecular cores selected from the sample of Spitzer's c2d program. For all three lines, these sources were all observed to the positions of half the peak intensity of the 13CO(J = 1 − 0) line. The volume density, local thermodynamic equilibrium mass MLTE and virial mass MVIR were derived for each of the molecular cores. The obtained ratio of MVIR to MLTE is 0.85 ± 0.40 for the 13CO(J = 1 − 0) cores and 0.77 ± 0.35 for the CO18 (J = 1 − 0) cores. The density profiles of the cloud cores were also calculated.  相似文献   

14.
Pectroscopic data on the shifts and widths of the energy levels of molecular oxygen have been used in the empirical construction of a diabatic potential matrix that characterizes the interactions of the B3u state with the 5Πu, 23+u, 3Πu and 1Πu states. The diabatic potential matrix is u theory formulation to calculate the cross-sections for the excitation of O(1D) atoms in collisions of two O(3P) atoms. Total cross-sections are obtained by adding the excitation from the 3Πg, channel. The rate coefficient for quenching of O(1D) by O(3P) is evaluated as a function of temperature. The values conflict with a recent analysis of the emission of the oxygen red line in the upper atmosphere.  相似文献   

15.
A new interstellar molecule, methylcyanoacetylene (CH3C3N), has been detected in the molecular cloud TMC-1. The J = 8 --> 7, J = 7 --> 6, J = 6 --> 5, and J = 5 --> 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 --> 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity VLSR = 5.8 km s-1 for TMC-1, typical of other molecules in the cloud. All observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 --> 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined for these observations is quite low, with 2.7 K < or = Trot < or = 4 K. the total column density is approximately 5 x 10(12) cm-2.  相似文献   

16.
The fate of the cooling gas in the central regions of rich clusters of galaxies is not well understood. In one plausible scenario clouds of atomic or molecular gas are formed. However the mass of the cold gas, inferred from measurements of low-energy X-ray absorption, is hardly consistent with the absence of powerful CO or 21-cm emission lines from the cooling flow region. Among the factors which may affect the detectability of the cold clouds are their optical depth, shape and covering fraction. Thus, alternative methods to determine the mass in cold clouds, which are less sensitive to these parameters, are important.   For the inner region of the cooling flow (e.g. within a radius of ∼50–100 kpc) the Thomson optical depth of the hot gas in a massive cooling flow can be as large as ∼ 0.01. Assuming that the cooling time in the inner region is few times shorter than the lifetime of the cluster, the Thomson depth of the accumulated cold gas can be accordingly higher (if most of the gas remains in the form of clouds). The illumination of the cold clouds by the X-ray emission of the hot gas should lead to the appearance of a 6.4-keV iron fluorescent line, with an equivalent width proportional to τT. The equivalent width only weakly depends on the detailed properties of the clouds, e.g. on the column density of individual clouds, as long as the column density is less than a few 1023 cm−2. Another effect also associated exclusively with the cold gas is a flux in the Compton shoulder of bright X-ray emission lines. It also scales linearly with the Thomson optical depth of the cold gas. With the new generation of X-ray telescopes, combining large effective area and high spectral resolution, the mass of the cold gas in cooling flows (and its distribution) can be measured.  相似文献   

17.
Within a framework of the two-fluids approximation, basic modes constituting hydromagnetic coupling oscillations in non-uniform, finite-β plasmas are examined. It is shown that the oscillations consist of a coupling between a localized mode and a propagating one, and a strong peak appears at a resonance point. In the case of isothermal plasma (Te = Ti), there are two localized modes, the Alfvén (or drift Alfvén) and the ion drift modes, and a propagating mode being known as the fast magnetosonic wave. Coupling oscillations associated with the Alfvén mode exhibit a nearly incompressible character, whereas those with the ion drift mode are compressional and diamagnetic. Furthermore, the slow magnetosonic wave also couples with the localized mode in the case of Te > Ti. Based on characteristics of these oscillations, the origin of geomagnetic pulsations is discussed in connection with the distribution of plasma parameters in the outer magnetosphere.  相似文献   

18.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

19.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

20.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号