首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The importance of topographic microvariability in influencing shallow (10–50 cm depths) soil temperature regimes in arctic–alpine Kärkevagge, northern Sweden, from August 1999 to July 2000 is demonstrated using six sites. The ground microclimate on the tops of very large boulders forming an extensive boulder field in the central valley bottom is more comparable to that at an alpine ridge–crest site 300 m higher than it is to the microclimate at the base of one of the boulders. The boulder crests also differ substantially from the more generalized valley–bottom conditions outside the boulder field. Assuming that chemical processes may be active at temperatures at or above 0°C, sites in the valley experience favorable conditions from 159 to 324 days of the year. Aside from the annual cycle, freeze–thaw cycles are infrequent within Kärkevagge.  相似文献   

2.
Kärkevagge is an alpine valley in the low arctic of Swedish Lapland. It is named after, and famous for, its large deposit of immense (c. 10–15 m) boulders that almost fill the lower valley. Above the boulder deposit, on the flanks of the valley, are more recent and generally much smaller (c. 1–3 m) individual boulders that have fallen from the valley-wall cliff face, presumably from post-glacial valley-side unloading. Some of these smaller boulders are seemingly fresh and unweathered while others have been reduced to no more than mounds in the tundra. These boulders must be younger than the larger, lower giant boulder deposit, but are not particularly recent rockfalls as they are partially buried in colluvium. Comparisons of mineralogy and chemistry indicate that the possibility exists that the incompetent, 'rotten' rocks, if not considerably older than their competent neighbors, are inherently self-destructive. They have evidence of increased sulfur content, which is a proxy for pyrite, a known weathering accelerant in Kärkevagge.  相似文献   

3.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   

4.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   

5.
The second marvel to catch the eye of the visitor to Kärkevagge, after the impressive boulder deposit on the floor of the valley, is the series of prominent white stripes running down the valley's dark cliffs. Streams and springs descending the eastern flank of Kärkevagge are marked by the presence of whitish coatings on the black rock surfaces and on cobbles lining ephemeral waterways. These were referred to as 'lime crusts' by early investigators, but they are not reactive to HCl. We believe that they are a precipitate resulting from acid attack on the local rocks. Pyrite is common in many of the rocks in the valley and its oxidation produces sulfuric acid. As the dissolved mineral elements are carried in the drainage water, efflorescence forms on the surfaces where the water flows due to evaporation or to changes in temperature. The exact mineralogy of the white crusts is unknown, but the crusts are dominated by Al, S, and O, and in some cases by Ca, depending on the substrate and local conditions. Gypsum, illite, and chlorite have been identified by X–ray diffraction of some scrapings of white–coated rocks. However, we believe that some unidentified oxy–hydroxy aluminum sulfates make up the bulk of the precipitates.  相似文献   

6.
The second marvel to catch the eye of the visitor to Kärkevagge, after the impressive boulder deposit on the floor of the valley, is the series of prominent white stripes running down the valley's dark cliffs. Streams and springs descending the eastern flank of Kärkevagge are marked by the presence of whitish coatings on the black rock surfaces and on cobbles lining ephemeral waterways. These were referred to as 'lime crusts' by early investigators, but they are not reactive to HCl. We believe that they are a precipitate resulting from acid attack on the local rocks. Pyrite is common in many of the rocks in the valley and its oxidation produces sulfuric acid. As the dissolved mineral elements are carried in the drainage water, efflorescence forms on the surfaces where the water flows due to evaporation or to changes in temperature. The exact mineralogy of the white crusts is unknown, but the crusts are dominated by Al, S, and O, and in some cases by Ca, depending on the substrate and local conditions. Gypsum, illite, and chlorite have been identified by X–ray diffraction of some scrapings of white–coated rocks. However, we believe that some unidentified oxy–hydroxy aluminum sulfates make up the bulk of the precipitates.  相似文献   

7.
The research record on the quantification of sediment transport processes in periglacial mountain environments in Scandinavia dates back to the 1950s. A wide range of measurements is available, especially from the Kärkevagge region of northern Sweden. Within this paper satellite image analysis and tools provided by geographic information systems (GIS) are exploited in order to extend and improve this research and to complement geophysical methods. The processes of interest include mass movements such as solifluction, slope wash, dirty avalanches and rock- and boulder falls. Geomorphic process units have been derived in order to allow quantification via GIS techniques at a catchment scale. Mass movement rates based on existing field measurements are employed in the budget calculations. In the Kärkevagge catchment, 80% of the area can be identified either as a source area for sediments or as a zone where sediments are deposited. The overall budget for the slopes beneath the rockwalls in the Kärkevagge is approximately 680 t a−1 whilst about 150 t a−1 are transported into the fluvial system.  相似文献   

8.
This study examines the spatial variability of early season water chemistry in the arctic-alpine valley of Kärkevagge, Sweden. The data demonstrate the spatially heterogeneous nature of water chemistry and the general patterns of chemical weathering in the valley. Water chemistry in this valley is dominated by two anions, bicarbonate and sulfate. Bicarbonate is derived from the dissolution of atmospheric CO2 and the weathering of carbonate units in the local metamorphic rocks, while the sulfate is derived from the oxidation of pyrite in the Seve-Koli tectonic nappe. Spatial patterns of chemical constituents reflect the broad effects of local geology on surface water chemistry. In particular, they demonstrate the effects that mineral species present in minor amounts have on basin-wide water chemistry. However, solute flux rates derived from water chemistry and discharge demonstrate less variability.  相似文献   

9.
The Kärkejokk (jokk = Lappish for brook) is rich in sulfate and calcium, both elements having been considered enigmatic. To resolve these problems we collected waters at 13 sites during 27 June to 1 September 1996. Nine sites were in the Kärkevagge, and the others in the drainage towards lake Torne Träsk. Rain waters were collected the same period. Conductivity, pH, and temperature were measured in the field, whereas salt load and the elements Na, K, Ca, Mg, S, Si, Fe, Al, Mn, Zn, Sr, and Ba were determined in the laboratory.
Mixing models based on rain water and leaching products of the major bedrocks do not explain observed element patterns except in the lower parts of the jokk. However, oxidation of pyrite has formed acid, sulfate–rich solutions that released Ca and Mg from limestones, and Fe, Mn, Al, and Si, from black shales (Malmsten 1998; Malmsten et al. 2000). Conservative mixing models, using rain water, leached bedrock and pyrite, match the jokk waters quite well, and sulfur isotope data corroborate these findings. The nearby Låktajokk, and Vassijokk also contain much S.
Where these waters debouch they may deposit Si, Al, and Ca, but only little S on various rocks. Total rock analyses, thermodynamic and X–ray data suggest that gypsum, barite, or alunite are not formed in major quantities.
These models show that the hydrogeochemistry of the Kärkejokk may be less enigmatic than often assumed.  相似文献   

10.
The Kärkejokk (jokk = Lappish for brook) is rich in sulfate and calcium, both elements having been considered enigmatic. To resolve these problems we collected waters at 13 sites during 27 June to 1 September 1996. Nine sites were in the Kärkevagge, and the others in the drainage towards lake Torne Träsk. Rain waters were collected the same period. Conductivity, pH, and temperature were measured in the field, whereas salt load and the elements Na, K, Ca, Mg, S, Si, Fe, Al, Mn, Zn, Sr, and Ba were determined in the laboratory.
Mixing models based on rain water and leaching products of the major bedrocks do not explain observed element patterns except in the lower parts of the jokk. However, oxidation of pyrite has formed acid, sulfate–rich solutions that released Ca and Mg from limestones, and Fe, Mn, Al, and Si, from black shales (Malmsten 1998; Malmsten et al. 2000). Conservative mixing models, using rain water, leached bedrock and pyrite, match the jokk waters quite well, and sulfur isotope data corroborate these findings. The nearby Låktajokk, and Vassijokk also contain much S.
Where these waters debouch they may deposit Si, Al, and Ca, but only little S on various rocks. Total rock analyses, thermodynamic and X–ray data suggest that gypsum, barite, or alunite are not formed in major quantities.
These models show that the hydrogeochemistry of the Kärkejokk may be less enigmatic than often assumed.  相似文献   

11.
Soil displacement, soil temperature, depths of thaw plane and groundwater level were continuously monitored during the period from July 1999 to June 2000 within a solifluction lobe in the Kärkevagge valley, northern Sweden. The strain–probe method was used to measure soil displacement, and we found significant soil displacements in the thawing period 2000. These displacements were the result of gelifluction. The ice content profile showed that gelifluction occurred at the same time as the thaw plane reached the layers with high ice content at shallow soil depths (0–6 and 16–25 cm deep). In contrast, gelifluction did not occur when the thaw plane reached the layers with high ice content at greater depth (46–49 cm deep). These observations indicate that thawing of ice lenses in the near–surface layer triggers gelifluction.  相似文献   

12.
The analysis of Holocene geomorphic process activity demands long–term data sets, which are available for the Kärkevagge catchment due to 50 years of intensive geomorphologic field studies. This data set is used in combination with additional field measurements, remote sensing and digital elevation model (DEM) analysis to provide input data for modelling Holocene valley development. On the basis of this information, geomorphic process units (GPUs) are defined by means of GIS modelling. These units represent areas of homogeneous process composition that transfer sediments. Since the data base enables the quantification of single processes, the interaction of processes within the units can also be quantified. Applying this concept permits calculation of recent sediment transfer rates and hence leads to a better understanding of actual geomorphic landscape development activity. To extrapolate these data in time and space the process–related sediments in the valley are analysed for depth and total volume, primarily using geophysical methods. In this fashion the validity of measured process rates is evaluated for the Holocene time scale. Results from this analysis are exemplified in a cross–profile showing some of the principal sediment units in the valley. For example, the measured modern rates on a slush torrent debris fan seem to represent the Holocene mean rate. This approach should also be suitable for revealing Holocene geomorphic landscape development in terms of climate change.  相似文献   

13.
The analysis of Holocene geomorphic process activity demands long–term data sets, which are available for the Kärkevagge catchment due to 50 years of intensive geomorphologic field studies. This data set is used in combination with additional field measurements, remote sensing and digital elevation model (DEM) analysis to provide input data for modelling Holocene valley development. On the basis of this information, geomorphic process units (GPUs) are defined by means of GIS modelling. These units represent areas of homogeneous process composition that transfer sediments. Since the data base enables the quantification of single processes, the interaction of processes within the units can also be quantified. Applying this concept permits calculation of recent sediment transfer rates and hence leads to a better understanding of actual geomorphic landscape development activity. To extrapolate these data in time and space the process–related sediments in the valley are analysed for depth and total volume, primarily using geophysical methods. In this fashion the validity of measured process rates is evaluated for the Holocene time scale. Results from this analysis are exemplified in a cross–profile showing some of the principal sediment units in the valley. For example, the measured modern rates on a slush torrent debris fan seem to represent the Holocene mean rate. This approach should also be suitable for revealing Holocene geomorphic landscape development in terms of climate change.  相似文献   

14.
Soil displacement, soil temperature, depths of thaw plane and groundwater level were continuously monitored during the period from July 1999 to June 2000 within a solifluction lobe in the Kärkevagge valley, northern Sweden. The strain–probe method was used to measure soil displacement, and we found significant soil displacements in the thawing period 2000. These displacements were the result of gelifluction. The ice content profile showed that gelifluction occurred at the same time as the thaw plane reached the layers with high ice content at shallow soil depths (0–6 and 16–25 cm deep). In contrast, gelifluction did not occur when the thaw plane reached the layers with high ice content at greater depth (46–49 cm deep). These observations indicate that thawing of ice lenses in the near–surface layer triggers gelifluction.  相似文献   

15.
Sediment transport processes in the Kärkevagge are investigated concerning their spatial and temporal characteristics due to long–term monitoring. Within this study remote sensing techniques and GIS modelling in connection with geomorphic mapping are applied for identification and characterization of geomorphic process units. Relationships between geomorphometric parameters and slope processes like solifluction, talus creep and rockfall have been analysed. Multitemporal Landsat–TM5 scenes are used as source for landcover characteristics (Normalized Difference Vegetation Index) after preprocessing involving orthorectification and topographic normalization in order to remove possible terrain–induced effects. Additionally, a digital elevation model with a resolution of 20 m for the Kärkevagge catchment is developed and parameters like slope gradient, slope aspect and profile curvature are extracted as input for the analysis of the sediment transport system. The combination of landcover information, geomorphometrical and topological features allows the definition of areas for single process activities. They show specific sediment displacement characteristics depending on material conditions, topological and geometrical features. Geomorphic process units, which show a homogenous composition, are extracted from these available layers.  相似文献   

16.
Lichenometric measurements using Rhizocarpon ssp. were carried out on 20 talus slopes in the cirques of the Finstertal valley (Austria) at an elevation of 2300–3000 m a.s.l. The aim was to assess activity patterns on selected slopes and between the slopes of the study area, to find evidence of rockfall pulses in the last centuries and to calculate rockwall retreat rates. A calibration curve was derived from five sites of known age and adapted to the prevailing size of talus boulders. We measured the five largest lichens on more than 300 boulders and the percentage coverage of Rhizocarpon‐free clasts on more than 1000 test fields. Most of the investigated talus cones are characterized by moderate rockfall supply, with the apex being more active than the talus foot and moderate redistribution by avalanche and debris flows. Considerably enhanced activity was found under rockwalls influenced by permafrost, particularly on the north faces at an elevation of >2600 m a.s.l. At currently moderately active sites, boulder falls seem to have been slightly more frequent in the late nineteenth and first half of the twentieth century. In positions where permafrost is expected in the rockwalls, a weak maximum in the late nineteenth century and highly active present‐day conditions were found, the latter being assigned to current permafrost melt. Rockwall retreat rates derived from lichen coverage are between 400 and 1500 mm/ka which is in good concurrence with talus volume assessments, but higher than the rates derived from direct rockfall measurements. The rates derived from lichen coverage have to be taken with caution as the effects of debris redistribution are hard to quantify.  相似文献   

17.
Sediment transport processes in the Kärkevagge are investigated concerning their spatial and temporal characteristics due to long–term monitoring. Within this study remote sensing techniques and GIS modelling in connection with geomorphic mapping are applied for identification and characterization of geomorphic process units. Relationships between geomorphometric parameters and slope processes like solifluction, talus creep and rockfall have been analysed. Multitemporal Landsat–TM5 scenes are used as source for landcover characteristics (Normalized Difference Vegetation Index) after preprocessing involving orthorectification and topographic normalization in order to remove possible terrain–induced effects. Additionally, a digital elevation model with a resolution of 20 m for the Kärkevagge catchment is developed and parameters like slope gradient, slope aspect and profile curvature are extracted as input for the analysis of the sediment transport system. The combination of landcover information, geomorphometrical and topological features allows the definition of areas for single process activities. They show specific sediment displacement characteristics depending on material conditions, topological and geometrical features. Geomorphic process units, which show a homogenous composition, are extracted from these available layers.  相似文献   

18.
Ronald I. Dorn   《Geomorphology》2003,55(1-4):155
An April–May 2000 “Coon Creek Fire” burned 37.5 km2 of the Sierra Ancha Mountains, 32.3 km miles north of Globe, AZ—including 25 sandstone and 19 diorite boulders surveyed in 1989 and resurveyed after the burn, after the summer 2000 monsoon season, and after the winter 2001 season. When viewed from the perspective of cumulative eroded area, both sandstone and diorite displayed bimodal patterns with 79% of sandstone boulder area and 93% of diorite boulder area undergoing either no fire-induced erosion or fire-induced erosion >76 mm. When stretched over cumulative boulder areas, erosion due to the fire averaged >26 mm for sandstone and >42 mm for diorite. Post-fire erosion from thunderstorm summer rains averaged <1 mm for 5 diorite and 1 mm for 10 sandstone boulders. While only a single diorite boulder eroded an average of 1.2 mm after the winter, winter erosion removed an average of 5.5 mm from 14 sandstone boulders. Thus, fire appears to increase a rock's susceptibility to post-fire weathering and erosion processes, as predicted by Goudie et al. [Earth Surf. Process. Landf. 17 (1992) 605]. In contrast to experimental research indicating the importance of size in fire weathering, no statistically significant relationship exists between erosion and boulder height or boulder surface area—a result similar to Zimmerman et al. [Quat. Res. 42 (1994) 255]. These data exclude 12 original sites and 85 boulders at sites impacted by the fire that could not be relocated, with a reasonable cause for the lack of relocation being boulder obliteration by the fire. Given evidence from 10Be and 26Al cosmogenic nuclides [Earth Planet. Sci. Lett. 186 (2001) 269] supporting the importance of boulders in controlling evolution of nonglaciated, bouldered landscapes [Geol. Soc. Amer. Bull. 76 (1965) 1165], fire obliteration of boulders could be an important process driving drainage evolution in nonglaciated mountains.  相似文献   

19.
Solifluction movement rates from 1952 to 2008 for the Abisko region, northern Sweden, have been compiled and analysed through correlation tests and multiple regression. The temporal analysis is based on two datasets ( Lobe11 & gridAB and Line B ) from Kärkevagge. The dataset Lobe11 & gridAB show a strong correlation between movement rates and mean annual air temperature (MAAT) and MAAT is also identified as one of the significant contributing parameters in the multiple regression model. No significant correlations were found for the Line B dataset. The spatial analysis indicates generally higher movement rates in the western part of the region and at lower altitudes mainly between 700 and 900 m a.s.l., but the spatial variability is high. To reduce the influence of the temporal variation the data for the correlation tests of the spatial variations were divided into two parts: 1957 to 1980 and 1981 to 2008. The correlation analysis of the dataset 1957 to 1980 shows a significant negative correlation between annual average movement rates and permafrost probability and altitude. The dataset 1981 to 2008 shows a positive correlation between movement rates and wetness index. It is concluded that movement rates may increase with higher MAAT in the western part of the region (Kärkevagge), the spatial variability of movement rates within the region is very high and that altitude (and/or permafrost) together with wetness index are the main controls on the regional spatial variation. The study highlights the limitations in establishing statistical relationships between movement rates and climate using data from different field empirical studies.  相似文献   

20.
Paraglacial rock slope failure (RSF) is here studied as a locally major contributor to mountain landscape evolution in the Caledonian ranges. Dense RSF clusters exist in Scotland and Norway, but overall RSF distribution in Scandinavia is poorly known. In the Abisko area, air photo scrutiny confirms the reported incidence of sparse but significant RSF. In the Kärkevagge complex, the Rissa RSF is one of the largest in northern Europe, with a scar volume of 42 Mm3. The well–known Giant Boulder Deposit (GBD) is a rock avalanche emanating from the Rissa RSF scar, the interpretation of wholesale valley wall retreat at deglaciation being discounted. In the adjacent valley of Vassivagge, a major RSF on Vuoitasrita has a similar area and morpholocation, but lacks a GBD. It has consumed 5–10% of the relict preglacial mountain surface. Both RSFs are near incipient watershed breaches in valleys which may have undergone vigorous enlargement during the last stadial. Glaciation history may explain spatial incidence as well as neotectonic and other triggers. The localised geomorphic impact of RSF in the Abisko mountains is high by comparison with contemporary slope processes. The cumulative impact of paraglacial RSF over the Quaternary may have been considerable, and RSF may be an indicator of concentrated late–stage glacial erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号