首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30?hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30?hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.  相似文献   

2.
采用1950-2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋)海表温度分别驱动NCAR CAM3全球大气环流模式,进行了多组长时间积分试验,对比ERA-40和NCEP/NCAR再分析资料,讨论了这些海域海表温度异常对东亚夏季风年代际变化的影响。数值试验结果表明:全球、热带、热带印度洋-太平洋和热带太平洋海表温度变化对东亚夏季风的年代际变化具有重要作用,均模拟出了东亚夏季风在20世纪70年代中后期发生的年代际减弱现象,以及强、弱夏季风年代夏季大气环流异常分布的显著不同,这与观测结果较一致,表明热带太平洋是影响东亚夏季风此次年代际变化的关键海区;利用热带印度洋海表温度驱动模式模拟出的东亚夏季风在20世纪70年代中后期发生年代际增强现象,即当热带印度洋海表温度年代际偏暖(冷)时,东亚夏季风年代际增强(减弱),与热带太平洋海表温度变化对东亚夏季风年代际变化的影响相反;热带太平洋海表温度年代际背景的变化对东亚夏季风在20世纪70年代中后期的年代际减弱有重要作用。  相似文献   

3.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

4.
Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions.  相似文献   

5.
Wavelet analysis is applied to zonal mean zonal wind and temperature fields to represent characteristics of temporal periodic features different from the annual and semi-annual recurrence in the troposphere and stratosphere. A daily database of reanalyses is used for the period 1979–2008, which comprises the era of satellite-based data, as some discontinuities have been observed around 1978 in previous studies. Levels for this study have been chosen at 400 and 10 hPa, respectively in the middle troposphere and middle stratosphere. As representative for diverse latitudinal regions we have respectively selected 0°, ±20°, ±40°, ±60°, ±80°. Significant features were only found at the equator. The period of the quasi-biennial oscillation (QBO) is found to exhibit a decreasing trend in time over the 30 years studied. Potential harmonics of the QBO are found in the tropical stratosphere but also troposphere. However, they do not exhibit the same tendency. This fact supports in particular the idea that the QBO and the tropospheric biennial oscillation may be unrelated phenomena. Some of the observed features lie within the known range of variability of the El Niño Southern Oscillation. Faint effects of the 11-year solar cycle variability may have been observed in the troposphere and stratosphere, but no firm assertion may be made due to the low number of observed cycles for this kind of phenomenon in the used data-set time span. Short-term solar variabilities leave no relevant imprint.  相似文献   

6.
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions.  相似文献   

7.
ECMWF reanalysis (ERA–interim) data of winds for two solar cycles (1991–2012) are harmonically analyzed to delineate the characteristics and variability of diurnal tide over a tropical site (13.5° N, 79.5° E). The diurnal cycle horizontal winds measured by Gadanki (13.5° N, 79.2° E) mesosphere–stratosphere–troposphere (MST) radar between May 2005 and April 2006 have been used to compute 24 h tidal amplitudes and phases and compared with the corresponding results obtained from ERA winds. The climatological diurnal tidal amplitudes and phases have been estimated from surface to ~33 km using ERA interim data. The amplitudes and phases obtained in the present study are found to compare reasonably well with Global Scale Wave Model (GSWM–09). Diurnal tides show larger amplitudes in the lower troposphere below 5 km during summer and in the mid-stratosphere mainly during equinoctial months and early winter. Water vapor and convection in the lower troposphere are observed to play major roles in exciting 24-h tide. Correlations between diurnal amplitude and integrated water vapor and between diurnal amplitude and outgoing longwave radiation (OLR) are 0.59 and ?0.34, respectively. Ozone mixing ratio correlates (ρ?=?0.66) well with diurnal amplitude and shows annual variation in the troposphere whereas semi-annual variation is observed at stratospheric heights with stronger peaks in equinoctial months. A clear annual variation of diurnal amplitude is displayed in the troposphere and interannual variability becomes prominent in the stratosphere which could be partly due to the influence of equatorial stratospheric QBO. The influence of solar activity on diurnal oscillations is found to be insignificant.  相似文献   

8.
应用NCAR CAM3全球大气环流模式以及NCEP/NCAR再分析资料,研究了不同海域(全球、热带外、热带、热带印度洋—太平洋、热带印度洋及热带太平洋)的海表温度异常对夏季南压高压年代际变化的影响。结果表明,全球、热带、热带印度洋—太平洋和热带太平洋这些海域的海表温度异常都对南亚高压强度、面积、南界、西伸脊点和东伸脊点的1970s中后期年代际变化有重要影响:热带太平洋是关键海区,其海表温度第三模态(“三明治”式异常分布型)的变化与南亚高压的这些特征指数的年代际变化关系密切;热带印度洋的海表温度异常,主要是其第一模态(热带印度洋全区一致变化型)的变化与南亚高压强度、面积、南界和西伸脊点的年代际变化关系较密切,热带印度洋也是影响南亚高压年代际变化的关键海区;这两个关键海区的海表温度异常对南亚高压年代际变化影响的主要差异在于:热带太平洋海表温度异常能对南亚高压的东伸脊点的年代际变化有重要影响,而热带印度洋的海表温度异常对其影响小;热带太平洋和热带印度洋这两个海区的海表温度异常均可通过影响热带对流层大气温度的变化进而使南亚高压发生变化;热带外的海表温度异常对南亚高压的年代际变化影响小。  相似文献   

9.
In this study, the retrospective predictions of ENSO (El Niño and Southern Oscillation) were performed for the period from 1881 to 2000 using a hybrid coupled model, which is an ocean general circulation model coupled to a linear statistical atmospheric model, and using a newly developed initialization scheme of SST assimilation by Ensemble Kalman Filter. With the retrospective predictions of the past 120 years, some important issues of ENSO predictability (measured by correlation and RMSE skills of NINO3 sea surface temperature anomaly index) were studied including decadal/interdecadal variations in ENSO predictability and the mechanisms responsible for these variations. Emphasis was placed on investigating the relationship between ENSO predictability and various characteristics of ENSO system such as the signal strength, the irregularity of periodicity, the noise and the nonlinearity. It is found that there are significant decadal/interdecadal variations in the prediction skills of ENSO during the past 120 years. The ENSO events were more predictable during the late nineteenth and the late twentieth centuries. The decadal/interdecadal variations of prediction skills are strongly related to the strength of sea-surface temperature anomaly (SSTA) signals, especially to the strength of SSTA signals at the frequencies of 2–4 year periods. The SSTA persistence, dominated by SSTA signals at frequencies over 4-year periods, also has a positive relationship to prediction skills. The high-frequency noise, on the other hand, has a strong inverse relationship to prediction skills, suggesting that it also probably plays an important role in ENSO predictability.  相似文献   

10.
用偏最小二乘(Partial Least Square,PLS)回归方法分析了 1979~2018年影响亚马逊旱季(6~8月)降水年际变率的热带海面温度模态.第一海面温度模态解释了总方差的64%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)热带东太平洋La Ni?a型海面温度异常演变.12月至次年2月...  相似文献   

11.
Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circulation model(NCAR CAM3)driven with 1950-2000 monthly SSTs in different marine areas(the globe,extratropics,tropics,tropical Indian Ocean-Pacific,and tropical Pacific)and ERA-40reanalysis data.Results show that all simulations,except the one driven with extratropical SSTs,can simulate the interdecadal strengthening of CEFs around Somali,120oE,and 150oE that occurred in the midand late-1970s.Among those simulated CEFs,the interdecadal variability in Somali and its interdecadal relationship with the East Asian summer monsoon are in better agreement with the observations,suggesting that changes in the SSTs of tropical oceans,especially the tropical Pacific,play a crucial role in the interdecadal variability of CEFs in Somali.The interdecadal change of CEFs in Somali is highly associated with the interdecadal variation of tropical Pacific SST.As the interdecadal warmer(colder)SST happens in the tropical Pacific,a"sandwich"pattern of SST anomalies,i.e."+,-,+"("-,+,-"),will occur in the eastern tropical Pacific from north to south with a pair of anomalous anticyclone(cyclone)at the lower troposphere;the pair links to another pair of anomalous cyclone(anticyclone)in the tropical Indian Ocean through an atmospheric bridge,and thus strengthens(weakens)the CEFs in Somali.  相似文献   

12.
曾刚  孙照渤  林朝晖 《大气科学》2010,34(2):307-322
采用1950~2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋) 海表温度分别驱动NCAR CAM3全球大气环流模式, 进行了多组长时间积分试验, 对比观测资料, 讨论了这些海域海表温度异常 (SSTA) 对西北太平洋副热带高压年代际变化的影响。结果表明: 全球、 热带、 热带印度洋-太平洋和热带印度洋海表温度变化均对夏季西北太平洋副热带高压的年代际变化有重要作用, 即在这些海域的海表温度变化影响下, 西北太平洋副热带高压均在1970年代中后期发生了年代际变化, 其后副高面积增大、 强度增强、 位置偏西、 偏南, 这与观测结果较一致; 热带太平洋海表温度变化对夏季西北太平洋副热带高压的年代际变化也有重要作用, 在其作用下, 夏季西北太平洋副热带高压的强度、 面积在1960年代后期发生年代际变化, 南界在1970年代中后期发生年代际变化, 这些时段以后副高强度增强、 面积增大、 偏南; 热带印度洋海表温度驱动模拟的西北太平洋副热带高压变化比热带太平洋海表温度驱动模拟的副高更接近于观测结果, 且年代际变化更显著, 其差异的可能原因在于两区海表温度在1970年代中后期以后的年代际变化能在孟加拉湾〖CD*2〗中国东南沿海区域强迫产生的异常环流不同, 前者强迫产生出反气旋性环流异常, 有利于副高的增强、 面积增大和西伸, 而后者强迫产生出气旋性环流异常, 不利于副高的西伸; 热带太平洋和热带印度洋海表温度在1970年代中后期的冷、 暖年代际背景变化对夏季西北太平洋副热带高压年代际变化有重要作用; 热带外海表温度变化对西北太平洋副热带高压年代际变化作用较小。  相似文献   

13.
Indices of El Nino and El Nino Modoki: An Improved El Nino Modoki Index   总被引:2,自引:0,他引:2  
In recent years, El Nino Modoki (pseudo-El Nino) has been distinguished as a unique large-scale ocean warming phenomenon happening in the central tropical Pacific that is quite different from the traditional El Nino. Empirical Orthogonal Function (EOF) analysis is used to successfully separate El Nino and El Nino Modoki. The abilities of the NINO3 index, NINO3.4 index, NINO1+2 index and NINO4 index in characterizing the El Nino are explored in detail. It is suggested that the NINO3 index is comparatively optimal to monitor the El Nino among the four NINO indices, since other NINO indices either cannot well distinguish El Nino and El Nino Modoki signals or are easily disturbed by El Nino Modoki signals. Further, an improved El Nino Modoki index (IEMI) is introduced to better represent the El Nino Modoki that is captured by the second leading EOF mode of monthly tropical Pacific sea surface temperature anomalies (SSTA). The IEMI is an improvement of the El Nino Modoki index (EMI) through adjusting the inappropriate weight coefficients of the three boxes of EMI, and it effectively overcomes the lack of EMI in monitoring the two historical El Nino Modoki events and also avoids the possible risk of EMI in excluding the interference of El Nino signal, indicating the realistic and potential advantages.  相似文献   

14.
This paper addresses the interdecadal variation of the West African summer monsoon (WASM) along with its background of atmospheric circulation and possible physical mechanism over the past 32?years (1979–2010). It is indicated that the WASM starts to strengthen from 1998 as the rainfall begins to increase over western West Africa on the whole, which shows a new interdecadal variation. In this interdecadal variation, the strengthened ascending motion corresponding to enhanced divergence (convergence) movement on the upper (lower) troposphere is prone to develop the local circulation of the monsoon. Moreover, the strengthened southwestern (eastern) wind on the lower (upper) level leads to more moisture from the Atlantic and the Gulf of Guinea transported to the West African continent. In addition, the summer subtropical high over the north Atlantic and western West Africa is strong and northward, and the tropical east wind is also strong. Statistically, the weaker (stronger) the spring North Atlantic Oscillation (NAO) is, the stronger (weaker) the tropical easterly is, and then the WASM is also stronger. But the effect of the NAO on the decadal variation of the WASM is not so significant from the north Atlantic anomaly sensitivity simulation with a single model. This is also an indication that the relationship between the WASM and NAO is complicated in an interdecadal time scale and is needed further study. In terms of sea surface temperature (SST) variation, the tendency is toward warming in the subtropical north Pacific, the south Pacific and north Atlantic. Numerical simulation experiments and data analysis show that the SST variation in the north Pacific plays an important role in the latest interdecadal strengthening of the WASM during the past 32?years, while the influences of the south Pacific and the north Atlantic SST anomalies are not so significant to the associated atmospheric circulation changes.  相似文献   

15.
基于NASA遥感系统提供的2003~2015年全球高分辨率海表温度资料,应用经验正交函数分析、时滞相关分析等方法,对北太平洋冬季黑潮延伸体区海温异常特征及其与热带海表温度的可能关系进行了初步分析。研究发现,冬季延伸体区的海温异常主要表现为两类结构特征,其一为上游区域发展型,包括海盆尺度一致性变化的季节模态和纬向反位相的收缩型结构;其二为纬向延展型,包括分叉东扩结构和通道东扩结构,且该两结构型在2010年前反位相,使得2006年前暖异常东扩路径基本控制在36°N以南,其后至2010年期间,暖异常东扩路径偏北,而2010年后结构型转为同位相,暖异常东扩路径偏北。分叉东扩结构表现为与热带海温变化紧密相关,进一步的时滞相关分析与合成分析表明,热带太平洋不同地区对中纬度海温分叉东扩的影响存在差异,Ni?o3区海温异常超前延伸体区分叉东扩模态约1~2个月,而Ni?o3.4区及Ni?o4区则与延伸体区海温分叉东扩保持前后各约3个月的宽谱同期负相关,或可表明El Ni?o的东部型和中部型对中纬度延伸体暖流分叉东扩存在超前和同期相关影响,且中部型影响更显著。  相似文献   

16.
The quasi-biennial oscillation (QBO) in the zonal wind in the tropical stratosphere is one of the most predictable aspects of the circulation anywhere in the atmosphere and can be accurately forecast for many months in advance. If the stratospheric QBO systematically (and significantly) affects the tropospheric circulation, it potentially provides a predictable signal useful for seasonal forecasting. The stratospheric QBO itself is generally not well represented in current numerical models, however, including those used for seasonal prediction and this potential may not be exploited by current numerical-model based forecast systems. The purpose of the present study is to ascertain if a knowledge of the state of the QBO can contribute to extratropical boreal winter seasonal forecast skill and, if so, to motivate further research in this area. The investigation is in the context of the second Historical Forecasting Project (HFP2), a state-of-the-art multimodel two-tier ensemble seasonal forecasting system. The first tier, consisting of a prediction of sea surface temperature anomalies (SSTAs), is followed by the second tier which is a prediction of the state of the atmosphere and surface using an AGCM initialized from atmospheric analyses and using the predicted SSTs as boundary conditions. The HFP2 forecasts are successful in capturing the extratropical effects of sea surface temperature anomalies in the equatorial Pacific to the extent that a linear statistical correction based on the NINO3.4 index does not provide additional extratropical skill. By contrast, knowledge of the state of the stratospheric QBO can be used statistically to add extratropical skill centred in the region of the North Atlantic Oscillation. Although the additional skill is modest, the result supports the contention that taking account of the QBO could improve extratropical seasonal forecasting skill. This might be done statistically after the fact, by forcing the QBO state into the forecast model as it runs or, preferably, by using models which correctly represent the physical processes and behaviour of the QBO.  相似文献   

17.
海温异常对台风形成的影响   总被引:13,自引:0,他引:13  
吴国雄 《大气科学》1992,16(3):322-332
本文利用地球流体力学实验室(GFDL)的低分辨气候模式进行数值试验,以研究海温异常对台风形成的影响.试验采用恒定8月气候条件和海表温度(SST).海温异常(SSTA)被置于北太平洋不同区域.结果表明,台风生成频率在暖SSTA区明显增加.这是由于暖SSTA区低层辐合的增强一方面使低空气旋式环流和高空反气旋式环流加大,另一方面导致低层水汽向该区辐合,使潜热释放加强,对流加剧所致.此一机制被用于解释台风频率和ENSO事件的相关.在冷ENSO年份,西北和西南太平洋台风增多不仅是由于赤道东太平洋SST异常冷,还与西太平洋SST异常暖有关.  相似文献   

18.
王春晓  田文寿 《大气科学》2017,41(2):275-288
利用2005~2014年10年的卫星微波临边探测仪(MLS)资料分析了热带平流层一氧化碳(CO)体积混合比的年际变率,发现热带平流层CO浓度的准两年振荡(QBO)在30 hPa高度附近存在明显的位相变化特征。大气化学气候模式模拟结果表明,热带平流层CO的准两年振荡信号是化学和动力过程共同作用的结果,而动力作用主要是QBO引起的次级经向环流引起的物质传输。化学和动力过程共同作用导致热带平流层CO浓度的垂直梯度在30 hPa高度处发生反转,进而产生一氧化碳QBO信号的位相变化。此外,化学气候模式模拟结果还表明,与CO有关的化学过程不但可以减弱一氧化碳QBO信号的振幅,还可以在热带30~10 hPa高度范围内造成一氧化碳QBO和纬向风QBO信号之间约3个月的时间差。  相似文献   

19.
20.
2007年,Ashok等揭示了赤道太平洋区域存在一种三极型分布海表温度异常并称之为厄尔尼诺-Modoki,同时定义了相应的海表温度异常指数EMI(记为IEM)。在此基础上,利用英国哈得来中心逐月海表温度资料、美国NCEP/NCAR月平均再分析数据集、美国国家海洋和大气管理局(NOAA)逐月降水资料(CMAP),通过在太平洋海表温度异常中扣除厄尔尼诺-Modoki信号后,在Nino1+2区域上定义了东太平洋型海表温度异常指数EPNI(IEPN)。据此,由IEPN和IEM可构成描述热带太平洋海表温度异常变化的一对指数。分析了两个指数相应的海气状态及对海洋性大陆区域气候异常的影响。结果表明,厄尔尼诺-Modoki和东太平洋型海表温度异常及其影响存在显著差异。在北半球夏季,当IEM处于正位相时,热带太平洋海表温度异常呈现“负-正-负”的结构,海洋性大陆大部分区域海表温度异常为负,此时对流层低层太平洋地区辐合,海洋性大陆地区辐散,对流层高层太平洋地区辐散,海洋性大陆地区辐合。对应于辐合辐散中心,存在着自赤道中太平洋分别向赤道东太平洋和海洋性大陆中东部地区的异常垂直环流圈,同时也存在自海洋性大陆西部向印度洋西部的垂直环流。大气在海洋性大陆区域北部加热,南部冷却;在太平洋地区西部加热而东部冷却;在海洋性大陆区域10°N以南降水偏少,而10°N以北降水偏多。当IEPN处于正位相时,热带太平洋海表温度异常呈现“西负东正”分布型,海洋性大陆区域海表温度异常呈现“西正东负”分布,对流层低层海洋性大陆地区辐散中心范围偏大、位置偏东、强度偏强,太平洋地区辐合中心范围偏小、位置偏东,热带环流异常在垂直方向上呈斜压结构,海洋性大陆区域北部大气加热而南部冷却,太平洋地区大气均呈加热正异常,海洋性大陆大部分区域降水均偏少,赤道太平洋降水偏多。以上这些结果有利于深刻理解热带太平洋海表温度异常的特征及其对海洋性大陆区域气候的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号