首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interannual variability associated with the El Ni?o/Southern Oscillation (ENSO) cycle is investigated using a relatively high-resolution (T42) coupled general circulation model (CGCM) of the atmosphere and ocean. Although the flux correction is restricted to annual means of heat and freshwater, the annual as well as the seasonal climate of the CGCM is in good agreement with that of the atmospheric model component forced with observed sea surface temperatures (SSTs). During a 100-year simulation of the present-day climate, the model is able to capture many features of the observed interannual SST variability in the tropical Pacific. This includes amplitude, lifetime and frequency of occurrence of El Ni?o events and also the phase locking of the SST anomalies to the annual cycle. Although the SST warming during the evolution of El Ni?os is too confined spatially, and the warming along the Peruvian coast is much too weak, the patterns and magnitudes of key atmospheric anomalies such as westerly wind stress and precipitation, and also their eastward migration from the western to the central equatorial Pacific is in accord with observations. There is also a qualitative agreement with the results obtained from the atmospheric model forced with observed SSTs from 1979 through 1994. The large-scale dynamic response during the mature phase of ENSO (December through February) is characterized by an eastward displacement and weakening of the Walker cell in the Pacific while the Hadley cell intensifies and moves equatorward. Similar to the observations, there is a positive correlation between tropical Pacific SST and the winter circulation in the North Pacific. The deepening of the Aleutian low during the ENSO winters is well captured by the model as well as the cooling in the central North Pacific and the warming over Canada and Alaska. However, there are indications that the anomalies of both SST and atmospheric circulation are overemphasized in the North Pacific. Finally, there is evidence of a coherent downstream effect over the North Atlantic as indicated by negative correlations between the PNA index and the NAO index, for example. The weakening of the westerlies across the North Atlantic in ENSO winters which is related to a weakening and southwestward displacement of the Icelandic low, is in broad agreement with the observations, as well as the weak tendency for colder than normal winters in Europe. Received: 31 October 1995 / Accepted: 29 May 1996  相似文献   

2.
The thermal state of the Bering Sea exhibits interdecadal variations, with distinct changes occurred in 1997–1998. After the unusual thermal condition of the Bering Sea in 1997–1998, we found that the recent climate variability (1999–2010) in the Bering Sea is closely related to Pacific basin-scale atmospheric and oceanic circulation patterns. Specifically, warming in the Bering and Chukchi Seas in this period involves sea ice reduction and stronger oceanic heat flux to the atmosphere in winter. The atmospheric response to the recent warming in the Bering and Chukchi Seas resembles the North Pacific Oscillation (NPO) pattern. Further analysis reveals that the recent climate variability in the Bering and Chukchi Seas has strong covariability with large-scale climate modes in the Pacific, that is, the North Pacific Gyre Oscillation and the central Pacific El Niño. In this study, physical connections among the recent climate variations in the Bering and Chukchi Seas, the NPO pattern and the Pacific large-scale climate patterns are investigated via cyclostationary empirical orthogonal function analysis. An additional model experiment using the National Center for Atmospheric Research Community Atmospheric Model, version 3, is conducted to support the robustness of the results.  相似文献   

3.
冬季北太平洋海温主模态在1990年前后调整及其成因初探?   总被引:1,自引:0,他引:1  
刘凯  祝从文 《大气科学》2015,39(5):926-940
太平洋年代际振荡(PDO)和北太平洋涡旋振荡(NPGO)是北太平洋(20°~60°N,120°E~120°W)海温(SST)的EOF前两个模态,本文通过比较1990年前后北太平洋冬季SST EOF前两个模态,揭示了PDO和NPGO在1990年前后特征,并从关键区海温变化、北太平洋涛动(NPO)、赤道太平洋中部变暖(CPW)和北极涛动(AO)的影响,揭示了北太平洋主模态在1990年之后调整的成因。我们发现,1990年之前,北太平洋SST场的EOF前两个模态与PDO和NPGO的空间结构类似,但是在1990年之后,SST的EOF第一模态的最大荷载中心向日界线移动,40°N以北的太平洋被正的SST异常控制,表现出与NPGO模态的负位相相似的空间分布特征,而EOF第二模态由偶极子演变成了三极子结构。北太平洋中部(28°~36°N,152°~178°W)和北太平洋北部(44°~49°N,151°~177°W)海温距平在1990年之后呈显著的负相关变化,是导致在1990年之后冬季NPGO成为主模态的内部原因,而NPO在1990年之后的显著增强则是重要的外部原因。分析显示,NPO在1980年开始表现出增强趋势,通过风生流机制,NPO可以增强北太平洋45°N附近的气压梯度和西风异常幅度,从而导致了1990年之后NPGO海温模态的加强。虽然CPW和AO对NPO的南支(夏威夷)和北支(阿拉斯加)的海平面气压异常中心加强有贡献,但是上述两个因子与NPGO之间的关系在1990年之前并不明显。因此,CPW和AO与NPGO之间并不存在稳定的物理联系。  相似文献   

4.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

5.
我国短期气候预测的物理基础及其预测思路   总被引:10,自引:3,他引:7       下载免费PDF全文
短期气候预测依据大气科学原理,运用气候动力学、统计学等手段,在研究气候异常成因的基础上对未来气候趋势进行预测。虽然目前我国短期气候预测的水平还不高,但短期气候预测是国家经济发展和防灾减灾的迫切需求,提高预测准确率是气象科研和业务人员的重要任务。该文从海洋、积雪等外强迫信号及大气环流大尺度变动等大气内部特性等角度概述了短期气候预测的物理基础,简要回顾了近60年来我国短期气候预测的发展历程,并介绍了作者近十几年来研制短期气候预测客观统计学及统计与动力学相结合预测模型的主要思路。  相似文献   

6.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

7.
Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.  相似文献   

8.
Impacts of convective momentum transport (CMT) on tropical Pacific climate are examined, using an atmospheric (AGCM) and coupled GCM (CGCM) from Seoul National University. The CMT scheme affects the surface mainly via a convection-compensating atmospheric subsidence which conveys momentum downward through most of the troposphere. AGCM simulations—with SSTs prescribed from climatological and El Nino Southern Oscillation (ENSO) conditions—show substantial changes in circulation when CMT is added, such as an eastward shift of the climatological trade winds and west Pacific convection. The CMT also alters the ENSO wind anomalies by shifting them eastward and widening them meridionally, despite only subtle changes in the precipitation anomaly patterns. During ENSO, CMT affects the low-level winds mainly via the anomalous convection acting on the climatological westerly wind shear over the central Pacific—so that an eastward shift of convection transfers more westerly momentum toward the surface than would occur without CMT. By altering the low-level circulation, the CMT further alters the precipitation, which in turn feeds back on the CMT. In the CGCM, CMT affects the simulated climatology by shifting the mean convection and trade winds eastward and warming the equatorial SST; the ENSO period and amplitude also increase. In contrast to the AGCM simulations, CMT substantially alters the El Nino precipitation anomaly patterns in the CGCM. Also discussed are possible impacts of the CMT-induced changes in climatology on the simulated ENSO.  相似文献   

9.
北太平洋海平面气压场变化与海温的关系   总被引:1,自引:0,他引:1  
利用SVD(singular value decomposition)方法分析了1948年1月—2002年12月北太平洋海平面气压场与海温的关系。结果表明,SVD第1对异类相关分布型反映出,当东北太平洋副热带高压加强(减弱)时,Namias海区海温升高(降低),而加利福尼亚海流区海温降低(升高)。SVD第2对异类相关分布型表明,当阿留申低压加深、北太平洋副热带地区气压升高时,黑潮暖流区海温升高,而北太平洋高、低纬海温降低;反之亦然。时滞相关表明,北太平洋大气环流异常超前海温1个月的相关最好,海温变化对大气环流异常分布型具有维持作用。NCAR CCSM3模拟结果很好地验证了上述结论,即在海气相互作用过程中,东北太平洋副热带高压和NPO(North Pacific Oscillation)与北太平洋海温存在密切联系。  相似文献   

10.
北太平洋涛动的季节演变及其与我国冬春气候异常的联系   总被引:12,自引:4,他引:8  
王林  陈文  冯瑞权 《大气科学》2011,35(3):393-402
本文利用NCEP/NCAR再分析资料和我国160站的观测资料,首先定义了季节平均的北太平洋涛动(NPO)指数,在此基础上分析了不同季节中NPO的时空变化特征,特别对冬季和春季NPO与我国气温、降水异常的关系作了研究.结果表明,作为北太平洋地区海平面气压(SLP)年际变化的第二模态,NPO具有相当正压的结构,在地面表现为...  相似文献   

11.
Summary The El Ni?o-Southern Oscillation (ENSO) climate cycle is the basis for this paper, aimed at providing a diagnostic outlook on seasonal sea-level variability (i.e. anomalies with respect to the Climatology) for the U.S.-Affiliated Pacific Islands (USAPI). Results revealed that the sea-level variations in the northwestern tropical Pacific islands (e.g. Guam and Marshall Islands) have been found to be sensitive to ENSO-cycle, with low sea-level during El Ni?o and high sea-level during La Ni?a events. The annual cycle (first harmonic) of sea-level variability in these north Pacific islands has also been found to be very strong. The composites of SST and circulation diagnostic show that strong El Ni?o years feature stronger surface westerly winds in the equatorial western/central Pacific, which causes north Pacific islands to experience lower sea-level from July to December, while the sea-level in south Pacific islands (e.g. American Samoa) remains unchanged. As the season advances, the band of westerly winds propagates towards the south central tropical Pacific and moves eastward, which causes American Samoa to experience a lower sea-level from January to June, but with six months time lag as compared to Guam and the Marshalls. U.S.-Affiliated Pacific Islands are among the most vulnerable communities to climate variability and change. This study has identified the year-to-year ENSO climate cycle to have significant impact on the sea-level variability of these islands. Therefore, regular monitoring of the ENSO climate cycle features that affect seasonal sea-level variability would provide substantial opportunities to develop advance planning and decision options regarding hazard management in these islands.  相似文献   

12.
In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Ni?o/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850?hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N?C30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E?C180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere?Cocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.  相似文献   

13.
In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.  相似文献   

14.
Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50-70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903-1998. Significant differences in spatio-temporal structures are found between the two modes.For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile,SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there.Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating Patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.  相似文献   

15.
A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Ni?o/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950–1960s when La Ni?a and warm Atlantic SSTs prevailed, and the 1980–1990s when El Ni?o and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Ni?o and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes in ancient Mexico.  相似文献   

16.
一种新的El Niño海气耦合指数   总被引:6,自引:1,他引:5  
利用1980~2010 年月平均Hadley中心海表温度、美国全球海洋资料同化系统(GODAS)海洋温度和NCEP/NCAR 大气环流再分析资料,通过对2 个海洋要素(海表温度SST、上层热含量HC)和5 个大气要素(海平面气压SLP、850 hPa 风场、200 hPa 速度势和对外长波辐射OLR)的多变量经验正交函数展开(multivariate EOF,简称MV-EOF)探讨了热带太平洋的主要海气耦合特征。结果表明,MV-EOF 分析的前两个耦合模态分别很好地对应了传统型El Ni?o 和El Ni?o Modoki 的海气耦合特征:传统型El Ni?o 期间,伴随着赤道中东太平洋SST 的异常增温,HC、SLP、200 hPa 速度势等要素总体呈东西反相的“跷跷板”变化,低层850 hPa 赤道中太平洋出现较强西风距平,西北太平洋上空为反气旋性异常环流;El Ni?o Modoki 期间,SST 持续增温和HC 正异常中心均显著西移至中太平洋,低层SLP 和高空200 hPa 速度势均呈现纬向三极型异常分布,低层异常强西风向西移至暖池东部,西北太平洋上空呈现气旋性异常环流。两类El Ni?o 的海气耦合特征存在显著差异,较优的El Ni?o 指数应不仅可以客观描述和区分El Ni?o 现象本身,更要紧密联系两类事件所产生的大气响应。以往定量表征El Ni?o 年际变化的指标大多立足于SST 或SLP,本文选取HC 作为研究指标,定义了一组新的El Ni?o 指数HCEI 和HCEMI。较以往基于SST 的El Ni?o 指数,HCEI 和HCEMI 不仅能更清楚地表征和区分两类El Ni?o(如1993 年的传统型El Ni?o 和2006 年的El Ni?o Modoki),而且能更好地反映和区分两类El Ni?o 与大气间的海气耦合特征,为El Ni?o的监测和短期气候预测工作提供了一个新工具。  相似文献   

17.
A seasonal forecast system based on a global, fully coupled ocean?Catmosphere general circulation model is used to (1) evaluate the interannual predictability of the Northwest Pacific climate during June?CAugust following El Ni?o [JJA(1)], and (2) examine the contribution from the tropical Indian Ocean (TIO) variability. The model retrospective forecast for 1983?C2006 captures major modes of atmospheric variability over the Northwest Pacific during JJA(1), including a rise in sea level pressure (SLP), an anomalous anticyclone at the surface, and a reduction in subtropical rainfall, and increased rainfall to the northeast over East Asia. The anomaly correlation coefficient (ACC) for the leading principal components (PCs) of SLP and rainfall stays above 0.5 for lead time up to 3?C4?months. The predictability for zonal wind is slightly better. An additional experiment is performed by prescribing the SST climatology over the TIO. In this run, designated as NoTIO, the Northwest Pacific anticyclone during JJA(1) weakens considerably and reduces its westward extension. Without an interactive TIO, the ACC for PC prediction drops significantly. To diagnose the TIO effect on the circulation, the differences between the two runs (Control minus NoTIO) are analyzed. The diagnosis shows that El Nino causes the TIO SST to rise and to remain high until JJA(1). In response to the higher than usual SST, precipitation increases over the TIO and excites a warm atmospheric Kelvin wave, which propagates into the western Pacific along the equator. The decrease in equatorial SLP drives northeasterly wind anomalies, induces surface wind divergence, and suppresses convection over the subtropical Northwest Pacific. An anomalous anticyclone forms in the Northwest Pacific, and the intensified moisture transport on its northwest flank causes rainfall to increase over East Asia. In the NoTIO experiment, the Northwest Pacific anticyclone weakens but does not disappear. Other mechanisms for maintaining this anomalous circulation are discussed.  相似文献   

18.
High-frequency atmospheric variability depends on the phase of El Nino/Southern Oscillation (ENSO). Recently, there is increasing evidence that state-dependent high-frequency atmospheric variability significantly modulates ENSO characteristics. Hence, in this study, we examine the model simulations of high-frequency atmospheric variability and, further, its dependency on the El Nino phase, using atmospheric and coupled GCMs (AGCM and CGCM). We use two versions of physical packages here—with and without convective momentum transport (CMT)—in both models. We found that the CMT simulation gives rise to a large climatological zonal wind difference over the Pacific. Also, both the climate models show a significantly improved performance in simulating the state-dependent noise when the CMT parameterization is implemented. We demonstrate that the better simulation of the state-dependent noise results from a better representation of anomalous, as well as climatological, zonal wind. Our further comparisons between the simulations, demonstrates that low-frequency wind is a crucial factor in determining the state-dependency of high-frequency wind variability. Therefore, it is suggested that the so-called state-dependent noise is directly induced by the low-frequency wind anomaly, which is caused by SST associated with ENSO.  相似文献   

19.
Observational data and climate model simulations and experiments are utilized to document an abrupt shift in Pacific sea surface temperatures (SSTs) and associated atmospheric conditions, which occurred in 1998–1999. Emphasis is placed on the March–May (MAM) season, as the motivation for the work is to extend a recent study that reported an abrupt decline in East African MAM rainfall at that time. An empirical orthogonal function analysis of MAM SSTs over the last century following the removal of the concurrent influence of the El Niño-Southern Oscillation and global warming trend by linear regression reveals a pattern of multidecadal variability in the Pacific similar to the Pacific Decadal Oscillation. Examination of MAM precipitation variations since 1940 indicates, among other findings, that recurrent drought events since 1999 in East Africa, central-southwest Asia, parts of eastern Australia and the southwestern US are all regional manifestations of a global scale multidecadal pattern. Associated shifts in the low-level wind field and upper-level stationary waves are discussed. Simulations using an atmospheric climate model forced with observed, global SSTs capture many of the salient precipitation and atmospheric circulation features associated with the observed shift. Further, when the model is forced only with observed SSTs from the tropical Pacific it also captures many of the observed atmospheric changes, including the abrupt shift in 1999. The results point to the fundamental role played by the tropical Pacific in driving the response to multidecadal variability of SSTs in the basin and provide important context for recent seasonal climate extremes in several regions of the globe.  相似文献   

20.
The spatio-temporal variability of Northern Hemisphere Sea Level Pressure(SLP)and precipitation over the mid-to-low reaches of the Yangtze River(PMLY)is analyzed jointly using the multi-taper/singular value decomposition method(MTM-SVD).Statistically significant narrow frequency bands are obtained from the local fractional variance(LFV)spectrum.Significant interdecadal(i.e.,16-to-18-year periods)and interannual(i.e.,3-to-6-year periods)signals are identified.Moreover,a significant quasi-biennial signal is identified but only for PMLY data.The spatial joint evolution of patterns obtained for peaks in the LFV spectrum sheds light on relationships between SLP and PMLY:the Arctic Oscillation(AO)modulates the variability of the PMLY while the interannual variability of PMLY is in phase with the Northern Atlantic Oscillation(NAO)and the Northern Pacific Oscillation(NPO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号