首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
During the Asian summer monsoon (ASM) season, the process of stratosphere–troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere (UTLS). However, the effect of the intensity of the Asian summer monsoon anticyclone (ASMA) on the horizontal distribution of chemical species within and around the ASMA, especially on the daily time scale, remains unclear. Here, the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season. The intraseasonal variation of ASMA is classified into a strong period (SP) and weak period (WP), which refer to the periods when the intensity of ASMA remains strong and weak, respectively. The relatively low ozone (O3) region is found to be larger at 100 hPa during SPs, while its mixing ratio is lower than during WPs in summer. In June, analysis shows that the O3 horizontal distribution is mainly related to the intensity of AMSA, especially during SPs in June, while deep convections also impact the O3 horizontal distribution in July and August. These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.摘要亚洲夏季风期, 平流层–对流层物质交换过程能显著影响上对流层下平流层化学成分的浓度变化和空间分布. 然而, 亚洲夏季风反气旋强度的季节内变化对其内部和周围地区化学成分水平分布的影响尚不清楚. 本文将亚洲夏季风反气旋划分为季节内强周期和弱周期, 发现当亚洲夏季风反气旋更强时, 100 hPa O3低值区的面积更大, O3浓度更低. 但是这种影响主要体现在6月份, 7, 8月的O3水平分布还受东南亚地区深对流的影响. 这些结果表明亚洲夏季风反气旋强度和深对流的季节内变化可以显著影响亚洲夏季风期上对流层下平流层的化学分布.  相似文献   

2.
Continuous in-situ measurements of surface ozone (O3), carbon monoxide (CO) and oxides of nitrogen (NOx) were conducted at Udaipur city in India during April 2010 to March 2011. We have analyzed the data to investigate both diurnal and seasonal variations in the mixing ratios of trace gases. The diurnal distribution of O3 showed highest values in the afternoon hours and lower values from evening till early morning. The mixing ratios of CO and NOx showed a sharp peak in the morning hours but lowest in the afternoon hours. The daily mean data of O3, CO and NOx varied in the ranges of 5–51 ppbv, 145–795 ppbv and 3–25 ppbv, respectively. The mixing ratios of O3 were highest of 28 ppbv and lowest 19 ppbv during the pre-monsoon and monsoon seasons, respectively. While the mixing ratios of both CO and NOx showed highest and lowest values during the winter and monsoon seasons, respectively. The diurnal pattern of O3 is mainly controlled by the variations in photochemistry and planetary boundary layer (PBL) depth. On the other hand, the seasonality of O3, CO and NOx were governed by the long-range transport associated mainly with the summer and winter monsoon circulations over the Indian subcontinent. The back trajectory data indicate that the seasonal variations in trace gases were caused mainly by the shift in long-range transport pattern. In monsoon season, flow of marine air and negligible presence of biomass burning in India resulted in lowest O3, CO and NOx values. The mixing ratios of CO and NOx show tight correlations during winter and pre-monsoon seasons, while poor correlation in the monsoon season. The emission ratio of ?CO/?NOx showed large seasonal variability but values were lower than those measured over the Indo Gangetic Plains (IGP). The mixing ratios of CO and NOx decreased with the increase in wind speed, while O3 tended to increase with the wind speed. Effects of other meteorological parameters in the distributions of trace gases were also noticed.  相似文献   

3.
The present study focuses on identifying the main atmospheric circulation characteristics associated with aerosol episodes (AEs) over Kanpur, India during the period 2001–2010. In this respect, mean sea level pressure (MSLP) and geopotential height of 700 hPa (Z700) data obtained from the NCEP/NCAR Reanalysis Project were used along with daily Terra-MODIS AOD550 data. The analysis identifies 277 AEs [AOD500 >  \( \overline{AOD} \) 500 + 1STDEV (standard deviation)] over Kanpur corresponding to 13.2 % of the available AERONET dataset, which are seasonally distributed as 12.5, 9.1, 14.7 and 18.6 % for winter (Dec–Feb), pre-monsoon (Mar–May), monsoon (Jun–Sep) and post-monsoon (Oct–Nov), respectively. The post-monsoon and winter AEs are mostly related to anthropogenic emissions, in contrast to pre-monsoon and monsoon episodes when a significant component of dust is found. The multivariate statistical methods Factor and Cluster Analysis are applied on the dataset of the AEs days’ Z700 patterns over south Asia, to group them into discrete clusters. Six clusters are identified and for each of them the composite means for MSLP and Z700 as well as their anomalies from the mean 1981–2010 climatology are studied. Furthermore, the spatial distribution of Terra-MODIS AOD550 over Indian sub-continent is examined to identify aerosol hot-spot areas for each cluster, while the SPRINTARS model simulations reveal incapability in reproducing the large anthropogenic AOD, suggesting need of further improvement in model emission inventories. This work is the first performed over India aiming to analyze and group the atmospheric circulation patterns associated with AEs over Indo-Gangetic Plains and to explore the influence of meteorology on the accumulation of aerosols.  相似文献   

4.
Halogens in the atmosphere chemically destroy ozone. In the troposphere, bromine has higher ozone destruction efficiency than chlorine and is the halogen species with the widest geographical spread of natural sources. We investigate the relative strength of various sources of reactive tropospheric bromine and the influence of bromine on tropospheric chemistry using a 6-year simulation with the global chemistry transport model MOZART4. We consider the following sources: short-lived bromocarbons (CHBr3, CH2BrCl, CHBr2Cl, CHBrCl2, and CH2Br2) and CH3Br, bromine from airborne sea salt particles, and frost flowers and sea salt on or in the snowpack in polar regions. The total bromine emissions in our simulations add up to 31.7 Gmol(Br)/yr: 63 % from polar sources, 24.6 % from short-lived bromocarbons and 12.4 % from airborne sea salt particles. We conclude from our analysis that our global bromine emission is likely to be on the lower end of the range, because of too low emissions from airborne sea salt. Bromine chemistry has an effect on the oxidation capacity of the troposphere, not only due to its direct influence on ozone concentrations, but also by reactions with other key chemical species like HO x and NO x . Globally, the impact of bromine chemistry on tropospheric O3 is comparable to the impact of gas-phase sulfur chemistry, since the inclusion of bromine chemistry in MOZART4 leads to a decrease of the O3 burden in the troposphere by 6 Tg, while we get an increase by 5 Tg if gas-phase sulfur chemistry is switched off in the standard model. With decreased ozone burden, the simulated oxidizing capacity of the atmosphere decreases thus affecting species associated with the oxidation capacity of the atmosphere (CH3OOH, H2O2).  相似文献   

5.
利用星载微波临边遥感探测结果,对2006年6月28~29日江淮地区的一次强对流天气过程中对流层上部一氧化碳 (CO) 、臭氧 (O3) 、水汽 (H2O) 和冰水含量 (IWC) 的分布特点进行了研究.强对流天气过程前后的对比分析表明,CO混合比增大,在200 hPa处增加了0.12 ppm (1 ppm=10-6);O3混合比减小,在70 hPa处减少了0.30 ppm;H2O混合比在250 hPa处增加了400 ppm;IWC在强降水发生之前有大幅增长,在200 hPa处最大含量可达0.03 g/m3.CO和O3含量与垂直运动速度两者的相关变化表明,对流垂直输送作用可能是造成对流层上层和平流层低层大气成分变化的机制之一.而H2O和IWC含量的增加主要局限于对流层顶以下,这表明对流层上部水物质的质量和形态是由垂直输送作用和对流系统内部的微物理过程共同决定的.  相似文献   

6.
Black carbon (BC) mass concentration variation has been studied, over a period of 2 years (June 2010–May 2012) at Bhubaneswar. Daily, monthly and seasonal measurements revealed a clear winter maxima (5.6 μg/m3) of BC followed by post-monsoon (4.05 μg/m3), monsoon (3.02 μg/m3) and pre-monsoon (2.46 μg/m3). Nighttime BC mass concentrations have been found to be distinctly higher during winter followed by post-monsoon and monsoon. Investigations reveal that the winter maxima are due to a stable atmospheric condition and long-range transport over the Indo-Gangetic Plain and Western Asia. Local boundary layer dynamics and anthropogenic activities have been assumed to have a pronounced effect on the diurnal cycle seasonally. Statistical analysis suggests significant variation of BC during the months and non-significant during the days. The study also gives an insight into importance of BC study from health angle and suggests an assessment and management framework. Source apportionment study suggests that BC mass concentration observed at Bhubaneswar is generally dominated by fossil fuel combustion.  相似文献   

7.
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Punt (18o32’N, 73o51’E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean ver-tical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Rela-tive Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the larg-est at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.  相似文献   

8.
Surface ozone data from 25 Europeanlow-altitude sites and mountain sites located between79°N and 28°N were studied. The analysiscovered the time period March 1989–February 1993.Average summer and winter O3 concentrations inthe boundary layer over the continent gave rise togradients that were strongest in the north-west tosouth-east direction and west-east direction, respectively. WintertimeO3 ranged from 19 to 27 ppbover the continent, compared to about 32 ppb at thewestern border, while for summer the continentalO3 values ranged between 39 and 56 ppb and theoceanic mixing ratios were around 37 ppb. In the lowerfree troposphere average wintertime O3 mixingratios were around 38 ppb, with only an 8 ppbdifference between 28°N and 79°N. For summerthe average O3 levels decreased from about 55 ppbover Central Europe to 32 ppb at 79°N. Inaddition, O3 and Ox(= O3 + NO2)in polluted and clean air were compared. Theamplitudes of the seasonal ozone variations increasedin the north-west to south-east direction, while thetime of the annual maximum was shifted from spring (atthe northerly sites) to late summer (at sites inAustria and Hungary), which reflected the contributionof photochemical ozone production in the lower partsof the troposphere.  相似文献   

9.
Analysis of the NCEP/NCAR reanalysis wind data shows the presence of a stationary Rossby wave in the lower stratosphere during May. This wave is seen prominently below 70 hPa level, confined between 10°N and 50°N latitudes and has a zonal wave number of 6 or 7. It is an extension into the stratosphere of the Asia Pacific Wave (APW) of the troposphere documented by Joseph and Srinivasan (1999) . As in the troposphere, in the lower stratosphere this wave shows a phase shift of 20° longitude between deficient and excess Indian summer monsoon rainfall (ISMR) years. This wave has maximum amplitude at about 200 hPa. The amplitude of the wave decreases both above and below 200 hPa level. The large-amplitude portion of this wave is thus situated in the break region between the tropical and extratropical tropopauses around 30°N latitude. It is suggested that this large-amplitude APW exchanges the tropical and extratropical airmasses through the tropopause break, making the APW signature seen in the satellite monitored total ozone (TOMS data). APW is found to exist in the following monsoon season (June to September) with the same phase as in May and its signature is also seen in that season in total ozone.  相似文献   

10.
Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2?, Cl?, NO3 ?, Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2?, NO3 ?, and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 ? 32 % and SO4 2? 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2?, NO3 ? and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl?, Na+, and K+ were from a sea salt source.  相似文献   

11.
In this study, the effects of aerosols on the simulation of the Indian monsoon by the NCAR Community Atmosphere Model CAM3 are measured and investigated. Monthly mean 3D mass concentrations of soil dust, black and organic carbons, sulfate, and sea salt, as output from the GOCART model, are interpolated to mid-month values and to the horizontal and vertical grids of CAM3. With these mid-month aerosol concentrations, CAM3 is run for a period of approximately 16 months, allowing for one complete episode of the Indian monsoon. Responses to the aerosols are measured by comparing the mean of an ensemble of aerosol-induced monsoon simulations to the mean of an ensemble of CAM3 simulations in which aerosols are omitted, following the method of Lau et al. (2006) in their experiment with the NASA finite volume general circulation model. Additionally, an ensemble of simulations of CAM3 using climatological mid-month aerosol concentrations from the MATCH model is composed for comparison. Results of this experiment indicate that the inclusion of aerosols results in drops in surface temperature and increases in precipitation over central India during the pre-monsoon months of March, April, and May. The presence of aerosols induces tropospheric shortwave heating over central India, which destabilizes the atmosphere for enhanced convection and precipitation. Reduced shortwave heating and enhanced evaporation at the surface during April and May results in reduced terrestrial emission to cool the lower troposphere, relative to simulations with no aerosols. This effect weakens the near-surface cyclonic circulation and, consequently, has a negative feedback on precipitation during the active monsoon months of June and July.  相似文献   

12.
The interannual variability in the formation of mini warm pool (MWP, SST ≥ 30.5°C) and its impact on the formation of onset vortex (OV) over the east-central Arabian Sea (ECAS) are addressed by analyzing the NCEP OIV 2-weekly SST data and NCEP–NCAR reanalysis 850 hPa wind fields from May to June (prior to the onset of monsoon) over the north Indian Ocean for a period of 12 years from 1992 to 2003. Strong interannual variability in the formation and intensification of MWP was observed. Further, the 850 hPa wind fields showed that OV developed into an intense system only during 1994, 1998 and 2001. It formed in the region north of the MWP and on the northern flank of the low-level jet axis, which approached the southern tip of India just prior to the onset of monsoon, similar to the vortex of MONEX-79. The area-averaged zonal kinetic energy (ZKE) over the ECAS (8–15°N, 65–75°E) as well as over the western Arabian Sea (WAS, 5°S–20°N, 50–70°E) showed a minimum value of 5–15 m2 s?2 prior to monsoon onset over Kerala (MOK), whereas a maximum value of 280 m2 s?2 (40–70 m2 s?2) was observed over the ECAS (WAS) during and after MOK. The study further examined the plausible reasons for the occurrence of MWP and OV.  相似文献   

13.
To investigate an alternative technique of providing background and transboundary transport inputs for ozone (O3) simulations on a regional scale, the EPA’s Community Multi-scale Air Quality (CMAQ) model was integrated with high spectral resolution data from the Tropospheric Emission Spectrometer (TES) aboard the NASA’s Aura satellite. This study presents a comprehensive model evaluation of O3 for the entire year of 2009 over the contiguous United States with a focus on the State of Texas using both ozonesonde and ground measurements. While improving model performance in the upper atmosphere, CMAQ’s initial and boundary conditions (IC/BC) derived from the original TES data do not improve model performance in the troposphere because the satellite data exaggerated concentration of tropospheric O3. With a 10-ppb deduction of O3 concentration from TES, the IC/BC derived from the adjusted TES improves model performance from ground level through the upper atmosphere. The mean bias of daily maximum 8-h average concentration of O3 (MDA8) from the ground monitored in Texas decreased from 7 ppb to 4 ppb. Model results also show small influences of O3 from the upper troposphere on the concentrations at the ground level. With a complete exclusion of stratospheric layers, changes of annual mean MDA8 of O3 concentrations at ground-level were smaller than 1.1 % in Dallas and Houston. In addition, limitations of satellite data are discussed and recommendations are provided regarding the future application of satellite data in regional O3 simulations.  相似文献   

14.
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18o32’N, 73o51’E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean ver-tical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) when an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Rela-tive Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the larg-est at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.  相似文献   

15.
The cyclone frequency distribution over the Bay of Bengal during 1990–2009 was distinctly bimodal, with a primary post-monsoon peak and a secondary pre-monsoon peak, despite the very high convective available potential energy (CAPE) during the pre-monsoon. The location of the monsoon trough over the bay is a primary factor in tropical cyclogenesis. Because the trough was in the northernmost bay during the pre-monsoon season, cyclogenesis was inactive in the southern bay, where a strong southwesterly wind shear was found. In this season, moreover, a hot, dry air mass extending vertically from 950 to 600 hPa was advected from northwestern India toward the bay. Moist, warm southwesterly winds penetrating below the deep, dry air mass caused a prominent dryline to form aloft on the northwestern side of the bay. The synoptic-scale hot, dry air forcing to the bay suppressed the active convection necessary for cyclogenesis. The strength of the stable environmental layer, represented by convective inhibition (CIN), was extremely large, and acted as a cap over the northern and northwestern bay. Conversely, during the post-monsoon, there were no horizontal temperature or moisture gradients, and CAPE and CIN were fairly modest. The entire bay was covered by a very deep, moist layer from the surface to 700 hPa transported from the east. The monsoon trough position and the environmental CIN in combination can explain the lower frequency of cyclogenesis during the pre-monsoon compared with the post-monsoon season.  相似文献   

16.
Tropospheric distributions of ozone (O3) and water vapor (H2O) have been presented based on the Measurements of OZone and water vapor by Airbus In-Service AirCraft (MOZAIC) data over the metro and capital city of Delhi, India during 1996–2001. The vertical mixing ratios of both O3 and H2O show strong seasonal variations. The mixing ratios of O3 were often below 40 ppbv near the surface and higher values were observed in the free troposphere during the seasons of winter and spring. In the free troposphere, the high mixing ratio of O3 during the seasons of winter and spring are mainly due to the long-range transport of O3 and its precursors associated with the westerly-northwesterly circulation. In the lower and middle troposphere, the low mixing ratios of ∼20–30 ppbv observed during the months of July–September are mainly due to prevailing summer monsoon circulation over Indian subcontinent. The summer monsoon circulation, southwest (SW) wind flow, transports the O3-poor marine air from the Arabian Sea and Indian Ocean. The monthly averages of rainfall and mixing ratio of H2O show opposite seasonal cycles to that of O3 mixing ratio in the lower and middle troposphere. The change in the transport pattern also causes substantial seasonal variation in the mixing ratio of H2O of 3–27 g/kg in the lower troposphere over Delhi. Except for some small-scale anomalies, the similar annual patterns in the mixing ratios of O3 and H2O are repeated during the different years of 1996–2001. The case studies based on the profiles of O3, relative humidity (RH) and temperature show distinct features of vertical distribution over Delhi. The impacts of long range transport of air mass from Africa, the Middle East, Indian Ocean and intrusions of stratospheric O3 have also been demonstrated using the back trajectory model and remote sensing data for biomass burning and forest fire activities.  相似文献   

17.
Carbon monoxide (CO), Ozone (O3) and Black Carbon (BC) aerosol mass concentrations in relation to planetary boundary layer (PBL) height measurements were analyzed from January–December, 2008 over tropical urban environment of Hyderabad, India. DMSP-OLS night-time satellite data were analyzed for fire occurrence over the region and its correlation with pollution concentrations over the urban region. Results of the study suggested considerable increase in CO and BC concentrations during early morning hours. Higher concentration of BC, CO and ozone was observed during pre-monsoon, post-monsoon and winter and lowest concentrations exhibited during monsoon season. NCEP/NCAR reanalysis winds suggested long range transport of aerosols and trace gases from forest fires are enhancing the pollutant concentrations over the study area.  相似文献   

18.
Measurements of ground level ozone (O3), nitrogen dioxide (NO2) and meteorological parameters (air temperature, relative humidity and wind speed and direction) has been made for 3 years from March 2007 to February 2010 at Nagercoil (8.2°N, 77.5°E, 23 m above sea level), an equatorial rural coastal site of southern India. The monthly average of daytime maximum of O3 concentrations ranged from 28 to 50 parts per billion (ppb) with an annual average of 19.8 ppb. Similarly, monthly average of NO2 concentration ranged from 3.4 ppb to 7.7 ppb with an annual average of 5.3 ppb. The monthly variation of meteorological parameters shows the little changes being a coastal site. The estimated summer crops yield losses by 1.1–15.6 % from present O3 concentration level associated with AOT40 index 3.1–5 ppm h.  相似文献   

19.
Given and analyzed are the results of the measuring of concentration of ozone O3, nitrogen oxides NOx, and carbon monoxide CO at the surface as well as the sum of hydrocarbons and the aerosol optical depth in Obninsk (Kaluga oblast) during the warm period 2010 and 2011. The relationship between the air temperature and the maximum daily ozone values in May–September 2010 are characterized by the higher correlation coefficient than in May–September 2011: 0.82 ± 0.05 versus 0.64 ± 0.07. Increased concentration of surface ozone in Obninsk in July–August 2010 as compared to the similar period in 2011 were caused by the higher concentrations of the compounds-predecessors of ozone. The concentration of O3 in August 2010 exceeded 200μg/m3 and was never registered in Obninsk during the observation period of 2004–2011. This is associated with the air masses that came to Obninsk from the areas with peat and forest fires that resulted in the dramatic increase in surface concentrations of NOx, CO, and hydrocarbons.  相似文献   

20.
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Raya  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号