首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-resolution satellite gravity data of gravity recovery and climate experiment (GRACE) generated by Earth Gravity Model-2008 (EGM2008) have been utilised for geological mapping of the Jharia coalfield. The generated GRACE EGM2008 classical gravity data have been processed for estimation of gravity anomaly map. The gravity anomaly map has been enhanced using the first and second Vertical Derivatives techniques. Geological and structural maps of the study area have been overlapped over different derivative maps to analyse the correlation with the subsurface geological structures of the study area. Major distinct geological signatures, on different derivative maps, are correlated well with the existing geological map. Moreover, vertical derivative maps of the gravity data generated from GRACE EGM2008 model provide better agreement and understanding for geological setting of the Jharia coalfield.  相似文献   

2.
High-resolution EIGEN6C4 and EGM2008 Bouguer gravity data of 2190 degree spherical harmonic over the Singhbhum-Orissa Craton, India, have been generated from the International Centre for Global Earth Models. The Bouguer gravity anomaly difference maps of (i) in situ and EIGEN6C4, (ii) in situ and EGM2008 and iii) EIGEN6C4 and EGM2008 of the study area are compared. It reveals that EIGEN6C4 has lesser systematic error than EGM2008. However, from different profile plots of Bouguer gravity, east–west horizontal derivative and north–south horizontal derivative anomalies of the in situ, EIGEN6C4 and EGM2008, it is observed that most of the signatures of lithounits and geological structural elements are delineated very well by EGM2008 and match 94–98% with those of EIGEN6C4. Further, the Bouguer gravity, east–west horizontal derivative and north–south horizontal derivative anomalies of EGM2008 data over the study area have been used effectively for identifying various lithounits and geological structural elements.  相似文献   

3.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.  相似文献   

4.
An attempt has been made to use synthetic aperture radar (SAR) data for detection and monitoring of offshore oil seeps in the eastern offshore areas of the Krishna–Godavari Basin, which has been supplemented and correlated with collateral free-air gravity and seismic data. Images of the study area obtained from ENVISAT ASAR image mode were processed and analysed in detail. A number of natural oil seepages were identified and distinguished from pollution and biogenic slicks. These were subsequently studied using different parameters to assign various degrees of confidence. The repetitiveness of the identified seepages was studied and a total of five areas of seep repetitions had been recognized in the study area. The seeps that are repeated in images of different dates are more likely to be of natural origin than others. Simulation and modelling of a particular oil slick arising has been attempted over the Krishna–Godavari offshore using MIKE 21 software.  相似文献   

5.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

6.
It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier.  相似文献   

7.
Tilt-Depth以及其相关改进方法最初是基于磁异常基本公式推导,一直应用于磁法勘探领域。自2012年以来,不断有学者探讨重力场Tilt-Depth方法,但对重力场与磁场Tilt-Depth方法之间的关系研究较少,存在一些不同认识。梳理了重磁场之间Tilt-Depth方法的联系与区别,得出了Tilt-Depth方法在重力场中相比磁场高一阶导数的结论。验证了方法的有效性,通过对海南石碌矿区重力异常处理,提取了矿体的边界信息,突出了深部隐伏矿体产生的弱异常的边界范围,获取了矿体的位置及埋深参数,通过与已知地质剖面、反演剖面的对比,证实了重力场Tilt-Depth结论的正确性与有效性。  相似文献   

8.
Truncated geoid and gravity inversion for one point-mass anomaly   总被引:1,自引:0,他引:1  
The truncated geoid, defined by the truncated Stokes' integral transform, an integral convolution of gravity anomalies with the Stokes' function on a spherical cap, is often used as a mathematical tool in geoid computations via Stokes' integral to overcome computational difficulties, particularly the need to integrate over the entire boundary spheroid. The objective of this paper is to demonstrate that the truncated geoid does, besides having mathematical applications, have physical interpretation, and thus may be used in gravity inversion. A very simple model of one point-mass anomaly is chosen and a method for inverting its synthetic gravity field with the use of the truncated geoid is presented. The method of inverting the synthetic field generated by one point-mass anomaly has become fundamental for the authors' inversion studies for sets of point-mass anomalies, which are published in a separate paper. More general applications are currently under investigation. Since an inversion technique for physically meaningful mass distributions based on the truncated geoid has not yet been developed, this work is not related to any of the existing gravity inversion techniques. The inversion for one point mass is based on the onset of the so-called dimple event, which occurs in the sequence of surfaces (or profiles) of the first derivative of the truncated geoid with respect to the truncation parameter (radius of the integration cap), its only free parameter. Computing the truncated geoid at various values of the truncation parameter may be understood as spatial filtering of surface gravity data, a type of weighted spherical windowing method. Studying the change of the truncated geoid represented by its first derivative may be understood as a data enhancement method. The instant of the dimple onset is practically independent of the mass of the point anomaly and linearly dependent on its depth. Received: 26 September 1996 /Accepted: 28 September 1998  相似文献   

9.
In this study, ERS-1 altimeter data over the Indian offshore have been processed for deriving marine geoid and gravity. Processing of altimeter data involves corrections for various atmospheric and oceanographic effects, stacking and averaging of repeat passes, cross-over correction, removal of deeper earth and bathymetric effects, spectral analyses and conversion of geoid into free-air gravity anomaly. Methods for generation of residual geoid and free-air gravity anomaly using high resolution ERS-1 168 day repeat altimeter data were developed. High resolution detailed geoid maps, gravity anomaly and their spectral components have been generated over the Indian offshore using ERS-I altimeter data and ARCGIS system. A number of known megastructures over the study area have been successfully interpreted e.g. Bombay High, Saurastra platform, 90° east ridge etc. from these maps.  相似文献   

10.
The fixed gravimetric boundary-value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. Terrestrial gravimetric measurements located by precise satellite positioning yield oblique derivative boundary conditions in the form of surface gravity disturbances. In this paper, we discuss the boundary element method (BEM) applied to the linearized FGBVP. In spite of previous BEM approaches in geodesy, we use the so-called direct BEM formulation, where a weak formulation is derived through the method of weighted residuals. The collocation technique with linear basis functions is applied for deriving the linear system of equations from the arising boundary integral equations. The nonstationary iterative biconjugate gradient stabilized method is used to solve the large-scale linear system of equations. The standard MPI (message passing interface) subroutines are implemented in order to perform parallel computations. The proposed approach gives a numerical solution at collocation points directly on the Earth’s surface (on a fixed boundary). Numerical experiments deal with (i) global gravity field modelling using synthetic data (surface gravity disturbances generated from a global geopotential model (GGM)) (ii) local gravity field modelling in Slovakia using observed gravity data. In order to extend computations, the memory requirements are reduced using elimination of the far-zone effects by incorporating GGM or a coarse global numerical solution obtained by BEM. Statistical characteristics of residuals between numerical solutions and GGM confirm the reliability of the approach and indicate accuracy of numerical solutions for the global models. A local refinement in Slovakia results in a local (national) quasigeoid model, which when compared with GPS-levelling data, does not make a large improvement on existing remove-restore-based models.  相似文献   

11.
In order to improve the processing and interpretation of gravity data, multiscale edge theory in image processing is introduced into the study of gravity field. Multiscale edges of gravity anomaly are analyzed based on a special wavelet. It shows that the multiscale edges are the extrema points of the horizontal gravity gradient at different heights, which are related to the sharp discontinuities of underground sources. The applications of multiscale edge in downward continuation and gravity inversion are discussed. The simulated examples show that the multiscale edges can be applied to stabilize the downward continuation operator when the continuation height is low. The multiscale edges also have a convenient application to infer the geometry of the underground source. Moreover, the gravity inversion algorithm based on the multiscale edges has a good antinoise property. Supported by the National Natural Science Foundation of China(No.40704003), the National 973 Program of China(No.2007CB714405), the Open Research Fund from Key Laboratory of Geospace Environment and Geodesy(No.04-01-08).  相似文献   

12.
A general formula is developed and presented for transformations among geoidal undulation, gravity anomaly, gravity disturbance and other gravimetric quantities. Using a spectral form of the general formula, a criterion has been built in order to classify these transformations into forward and inverse transformations in this paper. Then, the two-dimensional convolution techniques are applied to the general formula to deal with the forward transformation while the two-dimensional deconvolution techniques are employed to treat the inverse transformation and evaluate the inverse general formula. Concepts of convolution and deconvolution are also reviewed in this paper. The stability and edge effect problems related to the deconvolution techniques are investigated using simulated data and numerical tests are done to quantify the stability of the deconvolution techniques for estimated gravity information. Finally, the marine gravity information for the Norwegian-Greenland Sea area has been derived from ERS-1 altimetry data using the deconvolution techniques.  相似文献   

13.
总强度磁异常各阶垂向导数换算新方法   总被引:2,自引:0,他引:2  
磁异常垂直导数换算在磁性目标解释推断过程中具有重要意义。分析了总强度磁异常各阶垂向导数频率转换因子的滤波特性,指出常规傅立叶变换法在求解总强度磁异常各阶垂向导数时,观测数据中高频噪声会显著放大,甚至会淹没掉真实信息。从理论上证明了总强度磁异常沿垂直方向的积分和各阶导数均为调和函数,在此基础上,提出联合采用空间域和频率域运算求解其沿垂直方向的各阶导数。该方法的基本思路是:利用频率域转换关系,计算平面上总强度磁异常沿垂直方向的积分值;选择三点二阶中心差分或双三次样条曲线函数法计算总强度磁异常垂向积分值沿水平方向的二阶导数;最后将二阶水平导数代入拉普拉斯方程求解出总强度磁异常的垂向一阶导数;以总强度磁异常及其垂向一阶导数沿水平方向的二阶导数为基础,结合拉普拉斯方程,可进一步求解出总强度磁异常任意阶垂向导数。同时,为了研究提出方法的有效性,采用球体磁场模型进行验证,并首次推导了地磁场方向和磁化强度方向不一致时,球体总强度磁异常沿垂直方向的一阶和二阶导数表达式。经研究表明:提出的方法换算得到的垂向导数结果精度明显优于常规傅立叶变换法换算结果,且具有较强的抗噪能力,尤其是在计算高阶导数时效果更加明显。  相似文献   

14.
综合应用小波多重分解法和小波多尺度边缘重构方法研究了重力异常的分离,发现该方法可以同时进行纵向和横向影响的有效分离,为复杂地区重力异常的合理分离提供了参考。在模拟实验的基础上,应用该分离方法对琉球俯冲带地区的重力异常进行了分离。在纵向分离中,提出根据重力异常和海底地形的相关性确定合适的分离尺度。在小波多尺度边缘分析中,通过选择合适的尺度范围同样可以达到分离横向重力异常的效果,而且比多尺度边缘重构方法简单。  相似文献   

15.
地表观测的重力位场是地形质量、浅部地质结构产生的剩余重力异常和深部地质构造产生的区域重力异常的叠加效应。基于尺寸可变的滑动窗口的二维低阶多项式拟合算法和格网距离(到中心点)倒数的定权规则在空间域对地面观测的重力位场数据进行了不同深度层的区域-剩余异常分离。这克服了常规算法仅在水平方向上区分不同异常空间分布及垂直方向上定性分离的缺陷。并利用构建的模型重力数据和实测重力位场数据分别进行解算,数值结果验证了该方法的有效性。  相似文献   

16.
Remote sensing-based methods of aboveground biomass (AGB) estimation in forest ecosystems have gained increased attention, and substantial research has been conducted in the past three decades. This paper provides a survey of current biomass estimation methods using remote sensing data and discusses four critical issues – collection of field-based biomass reference data, extraction and selection of suitable variables from remote sensing data, identification of proper algorithms to develop biomass estimation models, and uncertainty analysis to refine the estimation procedure. Additionally, we discuss the impacts of scales on biomass estimation performance and describe a general biomass estimation procedure. Although optical sensor and radar data have been primary sources for AGB estimation, data saturation is an important factor resulting in estimation uncertainty. LIght Detection and Ranging (lidar) can remove data saturation, but limited availability of lidar data prevents its extensive application. This literature survey has indicated the limitations of using single-sensor data for biomass estimation and the importance of integrating multi-sensor/scale remote sensing data to produce accurate estimates over large areas. More research is needed to extract a vertical vegetation structure (e.g. canopy height) from interferometry synthetic aperture radar (InSAR) or optical stereo images to incorporate it into horizontal structures (e.g. canopy cover) in biomass estimation modeling.  相似文献   

17.
Three Geoid Slope Validation Surveys were planned by the National Geodetic Survey for validating geoid improvement gained by incorporating airborne gravity data collected by the “Gravity for the Redefinition of the American Vertical Datum” (GRAV-D) project in flat, medium and rough topographic areas, respectively. The first survey GSVS11 over a flat topographic area in Texas confirmed that a 1-cm differential accuracy geoid over baseline lengths between 0.4 and 320 km is achievable with GRAV-D data included (Smith et al. in J Geod 87:885–907, 2013). The second survey, Geoid Slope Validation Survey 2014 (GSVS14) took place in Iowa in an area with moderate topography but significant gravity variation. Two sets of geoidal heights were computed from GPS/leveling data and observed astrogeodetic deflections of the vertical at 204 GSVS14 official marks. They agree with each other at a \({\pm }1.2\,\, \hbox {cm}\) level, which attests to the high quality of the GSVS14 data. In total, four geoid models were computed. Three models combined the GOCO03/5S satellite gravity model with terrestrial and GRAV-D gravity with different strategies. The fourth model, called xGEOID15A, had no airborne gravity data and served as the benchmark to quantify the contribution of GRAV-D to the geoid improvement. The comparisons show that each model agrees with the GPS/leveling geoid height by 1.5 cm in mark-by-mark comparisons. In differential comparisons, all geoid models have a predicted accuracy of 1–2 cm at baseline lengths from 1.6 to 247 km. The contribution of GRAV-D is not apparent due to a 9-cm slope in the western 50-km section of the traverse for all gravimetric geoid models, and it was determined that the slopes have been caused by a 5 mGal bias in the terrestrial gravity data. If that western 50-km section of the testing line is excluded in the comparisons, then the improvement with GRAV-D is clearly evident. In that case, 1-cm differential accuracy on baselines of any length is achieved with the GRAV-D-enhanced geoid models and exhibits a clear improvement over the geoid models without GRAV-D data. GSVS14 confirmed that the geoid differential accuracies are in the 1–2 cm range at various baseline lengths. The accuracy increases to 1 cm with GRAV-D gravity when the west 50 km line is not included. The data collected by the surveys have high accuracy and have the potential to be used for validation of other geodetic techniques, e.g., the chronometric leveling. To reach the 1-cm height differences of the GSVS data, a clock with frequency accuracy of \(10^{-18}\) is required. Using the GSVS data, the accuracy of ellipsoidal height differences can also be estimated.  相似文献   

18.
GPS伪距单点定位结果可表示为几种不同的坐标形式,通过数值导数的方法,分别将误差方程中的参数设为空间直角坐标、大地坐标以及高斯平面坐标,直接得出了这三种坐标形式的伪距单点定位结果,有利于提高大批量坐标转换的执行效率。另外考虑到有些测站大地高已知的情况,还讨论了定位结果为大地坐标时固定大地高和给定大地高但容许其有小量偏差的情况。  相似文献   

19.
One-year average satellite altimetry data from the Exact Repeat Missions (ERM) of GEOSAT have been used to determine marine gravity disturbances in the Labrador Sea region using the inverse Hotine approach with FFT techniques. The derived satellite gravity information has been compared to shipboard gravity as well as gravity information derived by least-squares collocation (LSC), GEMT3 and OSU91A geopotential models in the Orphan Knoll area. The RMS and mean differences between satellite and shipboard gravity disturbances are about 8.0 and 2.8 mGal, respectively. There is no significantly difference between the results obtained using FFT and LSC.  相似文献   

20.
利用卫星测高数据反演海洋重力异常研究   总被引:20,自引:2,他引:20  
全面研究了利用卫得测高数据反演海洋重力异常3种主要方法(即Stokes数据解析反解以及逆Vening-Meinesz公式)的技术特点,建立了3种算法的数学模型及其谱计算式,在以1440阶次位模型定义的标准场中完成了3种算法的数值比较和内部检核,通过仿真试验实现了3种算法的可靠性和稳定性检验,最后,本文利用卫得测高实测对南中国海地区的海洋重力异常进行了实际反演,并将反演结果同船测数据进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号