首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, we used Landsat-8 imagery to test object- and pixel-based image classification approaches in an urban fringe area. For object-based classification, we applied four machine learning classifiers: decision tree (DT), naive Bayes (NB), random trees (RT), and support vector machine (SVM). For pixel-based classification, we utilized the maximum likelihood classifier (MLC). Specifically, we explored the influence of repeated sampling on classification results with different training sample sizes. We found that (1) except the overall accuracy of NB, those of the other four classifiers increased as the training sample size increased; (2) repeated sampling had a significant effect on classification accuracy, especially for the DT and NB classifiers; and (3) SVM achieved the best classification accuracy. In addition, the performance of the object-based classifiers was superior to that of the pixel-based classifier. The results of this study can provide guidance on the training sample size and classifier selection.  相似文献   

2.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

3.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

4.
Roads and buildings constitute a significant proportion of urban areas. Considerable amount of research has been done on the road and building extraction from remotely sensed imagery. However, a few of them have been concentrating on using only spectral information. This study presents a comparison between three object-based models for urban features’ classification, specifically roads and buildings, from WorldView-2 satellite imagery. The three applied algorithms are support vector machines (SVMs), nearest neighbour (NN) and proposed rule-based system. The results indicated that the proposed rules in this study, despite the spectral complexity of land cover types, performed a satisfactory output with an overall accuracy of 92.92%. The advantages offered by the proposed rules were not provided by other two applied algorithms and it revealed the highest accuracy compared to SVM and NN. The overall accuracy for SVM was 76.76%, which is almost similar to the result achieved by NN (77.3%).  相似文献   

5.
Different pixel-based, object-based and subpixel-based methods such as time-series analysis, decision-tree, and different supervised approaches have been proposed to conduct land use/cover classification. However, despite their proven advantages in small dataset tests, their performance is variable and less satisfactory while dealing with large datasets, particularly, for regional-scale mapping with high resolution data due to the complexity and diversity in landscapes and land cover patterns, and the unacceptably long processing time. The objective of this paper is to demonstrate the comparatively highest performance of an operational approach based on integration of multisource information ensuring high mapping accuracy in large areas with acceptable processing time. The information used includes phenologically contrasted multiseasonal and multispectral bands, vegetation index, land surface temperature, and topographic features. The performance of different conventional and machine learning classifiers namely Malahanobis Distance (MD), Maximum Likelihood (ML), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Random Forests (RFs) was compared using the same datasets in the same IDL (Interactive Data Language) environment. An Eastern Mediterranean area with complex landscape and steep climate gradients was selected to test and develop the operational approach. The results showed that SVMs and RFs classifiers produced most accurate mapping at local-scale (up to 96.85% in Overall Accuracy), but were very time-consuming in whole-scene classification (more than five days per scene) whereas ML fulfilled the task rapidly (about 10 min per scene) with satisfying accuracy (94.2–96.4%). Thus, the approach composed of integration of seasonally contrasted multisource data and sampling at subclass level followed by a ML classification is a suitable candidate to become an operational and effective regional land cover mapping method.  相似文献   

6.
To have sustainable management and proper decision-making, timely acquisition and analysis of surface features are necessary. Traditional pixel-based analysis is the popular way to extract different categories, but it is not comparable by the achievements that can be achieved through the object-based method that uses the additional characteristics of features in the process of classification. In this paper, three types of classification were used to classify SPOT 5 satellite image in mapping land cover; Support vector machine (SVM) pixel-based, SVM object-based and Decision Tree (DT) pixel-based classification. Normalised Difference Vegetation Index and the brightness value of two infrared bands (NIR and SWIR) were used in manually developed DT classification. The classification of the SVM (pixel based) was generated using the selected groups of pixels that represent the selected features. In addition, the SVM (object based) was implemented by using radial-based function kernel. The classified features were oil palm, rubber, urban area, soil, water and other vegetation. The study found that the overall classification of the DT was the lowest at 69.87% while those of SVM (pixel based) and SVM (object based) were 76.67 and 81.25%, respectively.  相似文献   

7.
Abstract

Land use/land cover (LULC) classification with high accuracy is necessary, especially in eco-environment research, urban planning, vegetation condition study and soil management. Over the last decade a number of classification algorithms have been developed for the analysis of remotely sensed data. The most notable algorithms are the object-oriented K-Nearest Neighbour (K-NN), Support Vector Machines (SVMs) and the Decision Trees (DTs) amongst many others. In this study, LULC types of Selangor area were analyzed on the basis of the classification results acquired using the pixel-based and object-based image analysis approaches. SPOT 5 satellite images with four spectral bands from 2003 and 2010 were used to carry out the image classification and ground truth data were collected from Google Earth and field trips. In pixel-based image analysis, a supervised classification was performed using the DT classifier. On the other hand, object-oriented (K-NN) image analysis was evaluated using standard nearest neighbour as classifier. Subsequently SVM object-based classification was performed. Five LULC categories were extracted and the results were compared between them. The overall classification accuracies for 2003 and 2010 showed that the object-oriented (K-NN) (90.5% and 91%) performed better results than the pixel-based DT (68.6% and 68.4%) and object-based SVM (80.6% and 78.15%). In general, the object-oriented (K-NN) performed better than both DTs and SVMs. The obtained LULC classification maps can be used to improve various applications such as change detection, urban design, environmental management and zooning.  相似文献   

8.
高分辨率多光谱影像城区建筑物提取研究   总被引:4,自引:2,他引:2  
谭衢霖 《测绘学报》2010,39(6):618-623
城区高空间分辨率遥感数据由于存在大量同物异谱和异物同谱现象,应用传统的基于像元光谱分类的方法进行建筑物分类提取难以取得满意的效果。本文发展了一种从高分辨率Ikonos卫星影像上基于知识规则的面向对象分类提取城区建筑物方法,包括如下步骤:(1)融合1m全色和4m多光谱波段影像,生成1m分辨率的多光谱融合影像;(2)分割融合影像;(3)执行基于对象光谱的最近邻监督分类;(4)应用模糊逻辑分类器结合光谱、空间、纹理和上下文特征等知识规则进行建筑物分类。精度统计结果表明,本文提出的分类方法提取城区建筑物取得了93%的精度。  相似文献   

9.
The development of robust object-based classification methods suitable for medium to high resolution satellite imagery provides a valid alternative to ‘traditional’ pixel-based methods. This paper compares the results of an object-based classification to a supervised per-pixel classification for mapping land cover in the tropical north of the Northern Territory of Australia. The object-based approach involved segmentation of image data into objects at multiple scale levels. Objects were assigned classes using training objects and the Nearest Neighbour supervised and fuzzy classification algorithm. The supervised pixel-based classification involved the selection of training areas and a classification using the maximum likelihood classifier algorithm. Site-specific accuracy assessment using confusion matrices of both classifications were undertaken based on 256 reference sites. A comparison of the results shows a statistically significant higher overall accuracy of the object-based classification over the pixel-based classification. The incorporation of a digital elevation model (DEM) layer and associated class rules into the object-based classification produced slightly higher accuracies overall and for certain classes; however this was not statistically significant over the object-based using spectral information solely. The results indicate object-based analysis has good potential for extracting land cover information from satellite imagery captured over spatially heterogeneous land covers of tropical Australia.  相似文献   

10.
Airborne high–spatial resolution images were evaluated for mapping purposes in a complex Atlantic rainforest environment in southern Brazil. Two study sites, covered predominantly by secondary evergreen rainforest, were surveyed by airborne multispectral high-resolution imagery. These aerophotogrammetric images were acquired at four spectral bands (visible to near-infrared) with spatial resolution of 0.39 m. We evaluated different data input scenarios to suit the object-oriented classification approach. In addition to the four spectral bands, auxiliary products such as band ratios and digital elevation models were considered. Comparisons with traditional pixel-based classifiers were also performed. The results showed that the object-based classification approach yielded a better overall accuracy, ranging from 89% to 91%, than the pixel-based classifications, which ranged from 62% to 63%. The individual classification accuracy of forest-related classes, such as young successional forest stages, benefits the object-based approach. These classes have been reported in the literature as the most difficult to map in tropical environments. The results confirm the potential of object-based classification for mapping procedures and discrimination of successional forest stages and other related land use and land cover classes in complex Atlantic rainforest environments. The methodology is suggested for further SAAPI acquisitions in order to monitor such endangered environment as well as to support National Land and Environmental Management Protocols.  相似文献   

11.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

12.
Land cover monitoring using digital Earth data requires robust classification methods that allow the accurate mapping of complex land cover categories. This paper discusses the crucial issues related to the application of different up-to-date machine learning classifiers: classification trees (CT), artificial neural networks (ANN), support vector machines (SVM) and random forest (RF). The analysis of the statistical significance of the differences between the performance of these algorithms, as well as sensitivity to data set size reduction and noise were also analysed. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land cover categories in south Spain. Overall, statistically similar accuracies of over 91% were obtained for ANN, SVM and RF. However, the findings of this study show differences in the accuracy of the classifiers, being RF the most accurate classifier with a very simple parameterization. SVM, followed by RF, was the most robust classifier to noise and data reduction. Significant differences in their performances were only reached for thresholds of noise and data reduction greater than 20% (noise, SVM) and 25% (noise, RF), and 80% (reduction, SVM) and 50% (reduction, RF), respectively.  相似文献   

13.
We tested the effects of three fast pansharpening methods – Intensity-Hue-Saturation (IHS), Brovey Transform (BT), and Additive Wavelet Transform (AWT) – on sugarcane classification in a Landsat 8 image (bands 1–7), and proposed two ensemble pansharpening approaches (band stacking and band averaging) which combine the pixel-level information of multiple pansharpened images for classification. To test the proposed ensemble pansharpening approaches, we classified “sugarcane” and “other” land cover in the unsharpened Landsat multispectral image, the individual pansharpened images, and the band-stacked and band-averaged ensemble images using Support Vector Machines (SVM), and assessed the classification accuracy of each image. Of the individual pansharpened images, the AWT image achieved higher classification accuracy than the unsharpened image, while the IHS and BT images did not. The band-stacked ensemble images achieved higher classification accuracies than the unsharpened and individual pansharpened images, with the IHS-BT-AWT band-stacked image producing the most accurate classification result, followed by the IHS-BT band-stacked image. The ensemble images containing averaged pixel values from multiple pansharpened images achieved lower classification accuracies than the band-stacked ensemble images, but most still had higher accuracies than the unsharpened and individual pansharpened results. Our results indicate that ensemble pansharpening approaches have the potential to increase classification accuracy, at least for relatively simple classification tasks. Based on the results of the study, we recommend further investigation of ensemble pansharpening for image analysis (e.g. classification and regression tasks) in agricultural and non-agricultural environments.  相似文献   

14.
Object-based image analysis (OBIA) has attained great importance for the delineation of landscape features, particularly with the accessibility to satellite images with high spatial resolution acquired by recent sensors. Statistical parametric classifiers have become ineffective mainly due to their assumption of normal distribution, vast increase in the dimensions of the data and availability of limited ground sample data. Despite pixel-based approaches, OBIA takes semantic information of extracted image objects into consideration, and thus provides more comprehensive image analysis. In this study, Indian Pines hyperspectral data set, which was recorded by the AVIRIS hyperspectral sensor, was used to analyse the effects of high dimensional data with limited ground reference data. To avoid the dimensionality curse, principal component analysis (PCA) and feature selection based on Jeffries–Matusita (JM) distance were utilized. First 19 principal components representing 98.5% of the image were selected using the PCA technique whilst 30 spectral bands of the image were determined using JM distance. Nearest neighbour (NN) and random forest (RF) classifiers were employed to test the performances of pixel- and object-based classification using conventional accuracy metrics. It was found that object-based approach outperformed the traditional pixel-based approach for all cases (up to 18% improvement). Also, the RF classifier produced significantly more accurate results (up to 10%) than the NN classifier.  相似文献   

15.
In this paper pixel-based and object-oriented classifications were investigated for land-cover mapping in an urban area. Since the image fusion methods are playing a useful role in supplying classification different fusion approaches such as Gram-Schmidt Transform (GS), Principal Component Transform (PC), Haar wavelet, and À Trous Wavelet Transform (ATWT) algorithms have been used and the fused image with the best quality has been assessed on its respected classification. A Hyperion image and IRS-PAN image covering a region near Tehran, Iran have been used to demonstrate the enhancement and accuracy assessment of fused image over the initial images. The evaluation results of fused images showed that the Haar wavelet approach has good quality in preserving spectral information as well as spatial information. Classification results were compared to evaluate the effectiveness of the two classification approaches. Result of the pan-sharpened image classifications displayed that the object-oriented procedure presented more accurate outcomes (90.47 %) than those obtained by pixel-based classification method (77.33 %).  相似文献   

16.
赵诣  蒋弥 《测绘学报》2019,48(5):609-617
提出一种基于极化参数优化的面向对象分类方法。该方法结合光学和SAR数据,有效提高了对地物的识别能力。本文方法的关键在于:在■分解中,使用光学影像指导SAR影像选择同质点,使其更精确地估计极化参数并结合光学波谱信息作为输入特征;使用面向对象的分类方法,仅将光学影像作为分割输入,避免SAR噪声引起的分割错误。以美国Bakersfield地区的Sentinel-1/2数据为例,确定7种地物类型,对比分析不同输入与不同分类器对分类结果的影响。研究表明,优化输入参数在纹理丰富区域能够有效提高分类精度;面向对象的分类结果更加稳定并较好地维持地表几何特征;改进分类方法较传统分类方法总体精度提高了近10%,达到92.6%。  相似文献   

17.
This paper presents a new framework for object-based classification of high-resolution hyperspectral data. This multi-step framework is based on multi-resolution segmentation (MRS) and Random Forest classifier (RFC) algorithms. The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images. Given the high number of input features, an automatic method is needed for estimation of this parameter. Moreover, we used the Variable Importance (VI), one of the outputs of the RFC, to determine the importance of each image band. Then, based on this parameter and other required parameters, the image is segmented into some homogenous regions. Finally, the RFC is carried out based on the characteristics of segments for converting them into meaningful objects. The proposed method, as well as, the conventional pixel-based RFC and Support Vector Machine (SVM) method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics. These data were acquired by the HyMap, the Airborne Prism Experiment (APEX), and the Compact Airborne Spectrographic Imager (CASI) hyperspectral sensors. The experimental results show that the proposed method is more consistent for land cover mapping in various areas. The overall classification accuracy (OA), obtained by the proposed method was 95.48, 86.57, and 84.29% for the HyMap, the APEX, and the CASI data-sets, respectively. Moreover, this method showed better efficiency in comparison to the spectral-based classifications because the OAs of the proposed method was 5.67 and 3.75% higher than the conventional RFC and SVM classifiers, respectively.  相似文献   

18.
对比研究了平行六面体、最近邻分类法、最大似然法、神经网络等经典分类算法以及近年来新发展的支持向量机分类算法在基于分割对象的高分辨率遥感图像分类中的性能,详细分析了不同内积核函数对于支持向量机分类的影响。对两个试验区进行试验的结果表明,支持向量机分类算法分类精度得到明显改善,同时分类结果受参数、样本选择等影响较小,稳定性好。  相似文献   

19.
Detailed and enhanced land use land cover (LULC) feature extraction is possible by merging the information extracted from two different sensors of different capability. In this study different pixel level image fusion algorithms (PCA, Brovey, Multiplicative, Wavelet and combination of PCA & IHS) are used for integrating the derived information like texture, roughness, polarization from microwave data and high spectral information from hyperspectral data. Span image which is total intensity image generated from Advanced Land observing Satellite-Phase array L-band SAR (ALOS-PALSAR) quad polarization data and EO-1 Hyperion data (242 spectral bands) were used for fusion. Overall PCA fused images had shown better result than other fusion techniques used in this study. However, Brovey fusion method was found good for differentiating urban features. Classification using support vector machines was conducted for classifying Hyperion, ALOS PALSAR and fused images. It was observed that overall classification accuracy and kappa coefficient with PCA fused images was relatively better than other fusion techniques as it was able to discriminate various LULC features more clearly.  相似文献   

20.
Many experiments of object-based image analysis have been conducted in remote sensing classification. However, they commonly used high-resolution imagery and rarely focused on suburban area. In this research, with the Landsat-8 imagery, classification of a suburban area via the object-based approach is achieved using four classifiers, including decision tree (DT), support vector machine (SVM), random trees (RT), and naive Bayes (NB). We performed feature selection at different sizes of segmentation scale and evaluated the effects of segmentation and tuning parameters within each classifier on classification accuracy. The results showed that the influence of shape on overall accuracy was greater than that of compactness, and a relatively low value of shape should be set with increasing scale size. For DT, the optimal maximum depth usually varied from 5 to 8. For SVM, the optimal gamma was less than or equal to 10?2, and its optimal C was greater than or equal to 102. For RT, the optimal active variables was less than or equal to 4, and the optimal maximum tree number was greater than or equal to 30. Furthermore, although there was no statistically significant difference between some classification results produced using different classifiers, SVM has a slightly better performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号