首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文提出了一种基于CYGNSS数据的星载GNSS-R土壤湿度反演方法。首先,基于CYGNSS数据提取地表反射率参数,联合SMAP数据中提取的植被光学厚度、地表粗糙度和温度等辅助信息,初步构建了土壤湿度反演理论模型,并利用神经网络模型确定了土壤湿度反演的精细数学模型;然后,将该模型处理获得的土壤湿度以35%为分界点,利用本文提出的阶段函数模型提高反演精度,并使用2018年10月—2019年5月的CYGNSS数据,获得了全球范围内星载GNSS-R土壤湿度;最后,通过与SMAP提供的土壤湿度数据进行对比,评估了本文提出的星载GNSS-R土壤湿度反演方法的有效性,并对获取的星载GNSS-R土壤湿度进行了时间序列分析。结果表明,本文提出的土壤湿度反演方法的结果与SMAP土壤湿度具有良好的一致性,且随时间变化的趋势也相符合,为高精度土壤湿度反演提供了一种思路。  相似文献   

2.
利用随机森林回归进行极化SAR土壤水分反演   总被引:1,自引:0,他引:1       下载免费PDF全文
全极化合成孔径雷达影像能够提供地物丰富的极化信息,挖掘这些信息在地表参数反演中的作用是目前相关领域的研究趋势之一。针对冬小麦区域的不同植被覆盖情况,利用随机森林回归对常用极化特征在土壤水分反演中的重要性进行评估,并在此基础上进行特征选择,挑选优化的极化特征组合,构建了高精度的土壤水分反演模型。实验结果显示,由重要性评分较高的极化特征所组成的反演模型能得到均方根误差(root mean square error,RMSE)小于6%的反演精度,比只输入传统线极化后向散射系数的模型在不同时相、不同数据集的精度都有所提高。与支持向量回归和人工神经网络模型进行比较,利用随机森林回归进行重要性评分与土壤水分反演的效果更好。  相似文献   

3.
罗时雨  童玲  陈彦 《遥感学报》2017,21(6):907-916
山区土壤含水量对山区植被生长监测、滑坡预测等工作具有重要意义,因此针对山地低矮植被区域,提出了全极化SAR图像的土壤含水量估计方法。为解决山地区域SAR图像几何形变和极化旋转问题,根据入射角、坡度、坡向信息定义了可测区域与不可测区域,并对可测区域后向散射系数进行校正。其次以密西根模型为基础,发展了低矮植被的散射模型。在假定植被和土壤特征不变的情况下,基于此散射模型并结合校正数据建立了山区土壤含水量反演方法。结果表明,模型反演的土壤含水量和实验点实测值基本一致,两个实验点反演值分别为14%和15%,实测值为11.45%和15.80%,能够满足一般应用的需求。  相似文献   

4.
MPDI在微波辐射计植被覆盖区土壤水分反演中的应用   总被引:5,自引:0,他引:5  
王磊  李震  陈权 《遥感学报》2006,10(1):34-38
大尺度上的土壤水分变化监测对于建立全球的水循环模型意义重大,是实现气候变化预测和洪涝监测的基础。星载辐射计为实现大尺度上土壤水分的监测提供了监测途径。但是在星载辐射计观测时,地表植被层的吸收和散射作用会对土壤向上的微波辐射产生衰减影响,这种影响在反演土壤水分的过程中必须予以计算和消除。原有的反演算法中,在计算这部分影响的时候,需要大量的关于地表植被状况的辅助数据,而这些即时的辅助数据往往不易获得。以AMSR—E数据为例,研究证明了微波极化差异指数(MPDI)能够反映地表植被覆盖状况。以中国华北、华东地区为实验区,选择2004年4月8日的AMSR—E亮温数据和MODIS数据为样本数据,建立起MPDI与NDVI之间的负指数关系方程。基于对NDVI的认识,得到植被覆盖度高、中、低三种状况所对应的MPDI域值,以此域值为依据对中等植被覆盖度地区作出自动判断,并用MPDI计算植被层不透明度。  相似文献   

5.
目标分解技术在植被覆盖条件下土壤水分计算中的应用   总被引:6,自引:0,他引:6  
施建成  李震  李新武 《遥感学报》2002,6(6):412-415
目标分解技术利用协方差距阵的特征值和特征矢量,将极化雷达后向散射测量值分解为单向散射,双向散射和交叉极化散射三个分量,并建立了植被覆盖地表的一阶物理离散散射模型。通过分解的各分量与该模型的比较,建立重轨极化雷达测量数据估算土壤水分的方法,采用Washita‘92实验区多时相全极化L波段JPL/AIRSAR图像雷达测量数据,利用分解的散射测量值,我们评估了在同一入射角,单频(L波段),多路条件下,分解理论在进行土壤水分估计时减少植被影响的能力。结果表明利用目标分解理论和重轨极化雷达数据可以估算植被覆盖区域土壤水分的变化情况。  相似文献   

6.
An important research direction in advancing higher spatial resolution and better accuracy in soil moisture remote sensing is the integration of active and passive microwave observations. In an effort to address this objective, an airborne instrument, the passive/active L-band sensor (PALS), was flown over two watersheds as part of the cloud and land surface interaction campaign (CLASIC) conducted in Oklahoma in 2007. Eleven flights were conducted over each watershed during the field campaign. Extensive ground observations (soil moisture, soil temperature, and vegetation) were made concurrent with the PALS measurements. Extremely wet conditions were encountered. As expected from previous research, the radiometer-based retrievals were better than the radar retrievals. The standard error of estimates (SEEs) of the retrieved soil moisture using only the PALS radiometer data were 0.048 m3/m3 for Fort Cobb (FC) and 0.067 m3/m3 for the Little Washita (LW) watershed. These errors were higher than typically observed, which is likely the result of the unusually high soil moisture and standing water conditions. The radar-only-based retrieval SEEs were 0.092 m3/m3 for FC and 0.079 m3/ m3 for LW. Radar retrievals in the FC domain were particularly poor due to the high vegetation water content of the agricultural fields. These results indicate the potential for estimating soil moisture for low-vegetation water content domains from radar observations using a simple vegetation model. Results also showed the compatibility between passive and active microwave observations and the potential for combining the two approaches.  相似文献   

7.
High difference between dielectric constant of water (dielectric constant about 80) and dielectric constant of dried soil (dielectric constant about 2–3) makes Synthetic Aperture Radar (SAR) highly capable in soil moisture estimation. However, there are other factors which affect on radar backscattering coefficient. The most important parameters are vegetation cover, surface roughness and sensor parameters (frequency, polarization and incidence angle). In this paper, the importance of considering the effects of these parameters on SAR backscatter coefficients is shown by comparing different soil moisture estimation models. Moreover, an experimental soil moisture estimation model is developed. It is shown that this model can be used to estimate soil moisture under a variety of vegetation cover densities. The new developed model is based on combination of different indices derived from Landsat5-Thematic Mapper and AIRSAR images. The AIRSAR image is used for extraction of backscattering coefficient and incidence angle while TM image is used for calculation of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Brightness Temperature. Then a soil moisture estimation model which is named as Hybrid model is developed based on integration of all of these parameters. The accuracies of this model are assessed in the NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7 by using SAR data in C band and L band frequencies and also in different polarizations of HH, HV, VV and TP. The results show that for instance in L band with HV polarization, R-square values of 0.728, 0.628 and 0.527 are obtained between ground measured soil moisture and estimated soil moisture values using the Hybrid model for NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7, respectively.  相似文献   

8.
Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction.  相似文献   

9.
植被层对被动微波遥感土壤水分反演影响的研究   总被引:7,自引:0,他引:7  
在很多对土壤水分被动微波遥感的研究中 ,为简单起见 ,覆盖的植被层使用了一种简单的模型来表征其散射和衰减特性。本文中使用了一种基于辐射传输理论的离散模型来研究植被的发射率、传输率。这种方法可以更加真实地刻划组成植被的散射个体如叶、茎、树枝、树干等对这两个参数的影响 ,因而能更准确地描述植被对下垫面的影响。为了减少土壤水分反演算法中未知量的数目 ,该文给出了这两个参数的模拟结果分别在AMSR E三种不同频率下的简单关系。  相似文献   

10.
The assessment and quantification of spatio-temporal soil characteristics and moisture patterns are important parameters in the monitoring and modeling of soil landscapes. Remote-sensing techniques can be applied to characterize and quantify soil moisture patterns, but only when dealing with bare soil. For soils with vegetation, it is only possible to quantify soil-moisture characteristics through indirect vegetation indicators, i.e. the “vitality” of plants. The “vitality” of vegetation is a sum of many indicators, whereby different stress factors can induce similar changes to the biochemical and physiological characteristics of plants. Analysis of the cause and effect of soil-moisture properties, patterns and stress factors can therefore only be carried out using an experimental approach that specifically separates the causes. The study describes an experimental approach and the results from using an imaging hyperspectral sensor AISA-EAGLE (400–970 nm) and a non-imaging spectral sensor ASD (400–2,500 nm) under controlled and comparable conditions in a laboratory to study the spectral response compared to biochemical and biophysical vegetation parameters (“vitality”) as a function of soil moisture characteristics over the entire blooming period of Ash trees. At the same time that measurements were taken from the hyperspectral sensors, the following vegetation variables were also recorded: leaf area index (LAI), chlorophyll meter value — SPAD-205, vegetation height, C/N content and leaf water content as indicators of the “vitality” and the state of the vegetation. The spectrum of each hyperspectral image was used to calculate a range of vegetation indices (VI’s) with relationships for soil moisture characteristics and stress factors. The relationship between vegetation indices and plant “vitality” indicators was analysed using a Generalized Additive Model (GAM). The results show that leaf water content is the most appropriate vegetation indicator for assessing the “vitality” of vegetation. With the Water Index (WI) it was possible to differentiate between the moisture treatments of the control, moisture drought stress and the moisture flooding treatment over the entire growing season of the plants (R 2?=?0.94). There is a correlation between the “vitality” vegetation parameters (LAI, C/N content and vegetation height) and the indicators NDVI, WI, PRI and Vog2. In our study with Ash trees the vegetation parameter chlorophyll was found not to be a suitable indicator for detecting the “vitality” of plants using the spectral indicators. There is a possibility that the sensitivity of the indicators selected was too low compared to changes in the chlorophyll content of Ash trees. Adding the co-variable ‘time’ strengthens the correlation, whereas incorporating time and moisture treatment only improves the model very slightly. This shows that changes to the biochemical and biophysical characteristics caused by phenology, overlay a differentiation of the moisture treatments.  相似文献   

11.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically.  相似文献   

12.
The 52 papers in this special issue make use of airborne and/or ground data to deal with questions such as: 1) the estimation of effective soil temperature and vegetation water content from remote sensing data; 2) the impact of physical parameters such as soil texture, topography, vegetation type. and surface roughness on surface soil moisture retrieval; 3) the transferability of current retrieval equations across scales ranging from tens of kilometers; and 4) issues related to downscaling of low-resolution passive-microwave observations of surface soil moisture.  相似文献   

13.
This paper compared two soil moisture downscaling methods using three scaling factors. Level 3 soil moisture product of advanced microwave scanning radiometer for EOS (AMSR-E) is downscaled from 25 to 1?km. The downscaled results are compared with the soil moisture observations from polarimetric scanning radiometer (PSR) microwave radiometer and field sampling. The results show that (1) the scaling factor of normalized soil thermal inertia (NSTIs) and vegetation temperature condition index (VTCI) are better than soil evaporative efficiency in reflecting soil moisture; (2) for method 1, NSTIS is the best in the downscaling of soil moisture. For method 2, VTCI is the best; (3) no significant differences of the correlation coefficients (R2) and the biases were found between the two methods for the same scaling factors. However, method 2 shows a better potential than method 1 in the time-series applications of the downscaling of soil moisture; (4) compared with the relationship between the area-averaged soil moisture of AMSR-E and that of PSR, R2 of the 6 sets of the downscaled soil moisture almost do not decrease, which suggests the validity of the downscaling of soil moisture with the two downscaling methods using the three scaling factors.  相似文献   

14.
For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.  相似文献   

15.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

16.
Spaceborne Imaging Radar (SIR-C) polarimetric data acquired over Gujarat test site, India, during April and October 1994 were processed to retrieve soil moisture and surface roughness using multi-polarization techniques. Synchronous field data were collected and compared with the results obtained using SIR-C data. Indian Remote Sensing Satellite (IRS) images in visible region were used for locating groundtruth points. Multi-polarization inversion techniques are found to be sensitive to retrieval of soil moisture and surface roughness parameters. However, the accuracy is not adequate. There is a need to improve the existing inversion models to suit to the Indian agricultural fields.  相似文献   

17.
Since soil moisture and vegetation index are direct and important indicators for surface drought status, a new drought monitoring method (MPDI1) is developed in NIR-Red reflectance space. It is a combination of two satellite-derived variables—a soil moisture component using the Perpendicular Drought Index (PDI), and a vegetation component using the Perpendicular Vegetation Index (PVI). Enhanced Thematic Mapper Plus (ETM+) image and in-situ ground observation are introduced to validate the accuracy of the proposed method. Results indicate that MPDI1 is highly consistent to the in-situ ground observation with the coefficient of determination (R2?=?0.49) between MPDI1 and 5–20 cm mean soil moisture, which is slightly higher than the coefficient of determination (R2?=?0.42) between MPDI1 and 10 cm soil moisture. Compared with drought indices such as PDI and the Modified Perpendicular Drought Index (MPDI), MPDI1 provides quite similar trends for bare soil or lower vegetated surface, but it demonstrates a better performance in measuring densely vegetated surface. This paper concludes that MPDI1 provides correct and sufficient information on surface drought status in soil-plant continuum, which appears to have robust available and great potential for surface drought estimation in China and other countries.  相似文献   

18.
蒸散发是水圈、大气圈和生物圈中水分循环和能量交换的纽带。在全球尺度上,蒸散发约占陆地降水总量的60%;作为其能量表达形式,潜热通量约占地表净辐射的80%。随着通量观测技术的发展,全球长期持续的观测数据得以获取和共享,近年来基于数据驱动的蒸散发遥感反演方法取得了较好的研究进展。本文针对数据驱动的蒸散发遥感反演方法和产品,从经验回归、机器学习和数据融合3个方面展开,对现有的研究进展进行了梳理、归纳和总结,并从驱动数据、反演方法、已有产品等方面指出目前仍存在的问题和不足。未来仍需开展数据驱动的高时空分辨率的蒸散发遥感反演方法的研究,有效考虑地表温度和土壤水分等可以指示地表蒸散发短期变化的重要信息,同时加强基于过程驱动的物理模型与数据驱动的模型的结合,使两类模型能互为补充、各自发挥所长,共同推动蒸散发遥感反演研究水平的进步。  相似文献   

19.
自交叉双边滤波的极化SAR数据相干斑抑制   总被引:1,自引:1,他引:0  
相干斑抑制是极化SAR数据预处理的关键步骤。双边滤波是一种空域和值域滤波相结合的优秀边缘保持滤波算法。针对双边滤波在抑制极化SAR数据相干斑的不足,该文将改进的交叉双边滤波引入到极化SAR数据降噪领域,加入散射机制测度来扩展原权重核,根据SPAN图像的局域变差系数自动调整空间方差系数,利用参考图像来度量灰度值和散射机制相似性。实验结果表明:本文方法较经典滤波算法有更强的噪声平滑能力和更好的细节信息保持能力,在保持原数据极化散射信息方面也表现出良好的性能,这为基于极化SAR数据的后续应用提供了支持。  相似文献   

20.
多光谱多角度遥感数据综合反演叶面积指数方法研究   总被引:10,自引:2,他引:10  
叶面积指数是陆地生态系统的一个十分重要的结构参数。用遥感数据求取叶面积指数可以利用光谱的信息,比如通过植被指数来拟合一个经验关系,但很多植被指数明显受土壤背景的影响,对于有明显行结构的农作物,土壤的影响很难消除,植被指数的方法误差较大。多角度遥感包含了大量的地面目标的立体结构信息,具备求解植被特征参数的潜力,但通常多角度遥感反演对光谱信息的利用不足。与以往的反演方法相区别,该文利用行播作物二向反射模型,将多角度与多光谱数据结合进行行播作物LAI反演实验,并对反演算法进行了详细的敏感性分析实验,结果表明采用多角度、多光谱遥感数据相结合的方法可以有效反演行播作物的叶面积指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号