首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

2.
Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 re-analysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.  相似文献   

3.
The possible changes in the frequency of extreme temperature events in Hong Kong in the 21st century were investigated by statistically downscaling 26 sets of the daily global climate model projections (a combination of 11 models and 3 greenhouse gas emission scenarios, namely A2, A1B, and B1) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The models’ performance in simulating the past climate during 1971–2000 has also been verified and discussed. The verification revealed that the models in general have an acceptable skill in reproducing past statistics of extreme temperature events. Moreover, the models are more skillful in simulating the past climate of the hot nights and cold days than that of the very hot days. The projection results suggested that, in the 21st century, the frequency of occurrence of extremely high temperature events in Hong Kong would increase significantly while that of the extremely low temperature events is expected to drop significantly. Based on the multi-model scenario ensemble mean, the average annual numbers of very hot days and hot nights in Hong Kong are expected to increase significantly from 9 days and 16 nights in 1980–1999 to 89 days and 137 nights respectively in 2090–2099. On the other hand, the average annual number of cold days will drop from 17 days in 1980–1999 to about 1 day in 2090–2099. About 65 percent of the model-scenario combinations indicate that there will be on average less than one cold day in 2090–2099. While all the model-emission scenarios in general have projected consistent trends in the change of temperature extremes in the 21st century, there is a large divergence in the projections between difierent model/emission scenarios. This reflects that there are still large uncertainties in the model simulation of the future climate of extreme temperature events.  相似文献   

4.
China coldwave duration in a warming winter: change of the leading mode   总被引:1,自引:0,他引:1  
Changes of extreme climate in a warming climate may be different from place to place. How the China cold extreme events change is still an outstanding issue. From observational and modeling perspectives, this study investigates the change of the leading mode of the China coldwave duration (CWD) in a warming climate. CWD significantly reduces across China during 1957–2009. The reduction in northern China is much more than that in southern China. The CWD leading mode derived from the Empirical Orthogonal Function analysis is characterized by extreme value centers located in northern China during the cold period (1957–1979) and shifting to southern China during the warm period (1980–2009). This indicates that southern China may experience longer or shorter coldwaves in the past three decades, while those in northern China tend to vary less vigorously. The multi-model ensemble of seven state-of-the-art climate models from the Intergovernmental Panel on Climate Change (IPCC) show that under the IPCC SRES A1B scenario, the maximum loading of the CWD leading mode extends to southern China at the end of twenty-first century (2080–2099). These results indicate that the primary change of the CWD leading mode in a warming climate might be the southward shift of the variation center and such position change may lead to more intense coldwave variations in southern China as observed in the past decades. Possible physical mechanisms on the variation of the CWD major mode are also investigated in this study.  相似文献   

5.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

6.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

7.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

8.
The study makes a probabilistic assessment of drought risks due to climate change over the southeast USA based on 15 Global Circulation Model (GCM) simulations and two emission scenarios. The effects of climate change on drought characteristics such as drought intensity, frequency, areal extent, and duration are investigated using the seasonal and continuous standard precipitation index (SPI) and the standard evapotranspiration index (SPEI). The GCM data are divided into four time periods namely Historical (1961–1990), Near (2010–2039), Mid (2040–2069), and Late (2070–2099), and significant differences between historical and future time periods are quantified using the mapping model agreement technique. Further, the kernel density estimation approach is used to derive a novel probability-based severity-area-frequency (PBS) curve for the study domain. Analysis suggests that future increases in temperature and evapotranspiration will outstrip increases in precipitation and significantly affect future droughts over the study domain. Seasonal drought analysis suggest that the summer season will be impacted the most based on SPI and SPEI. Projections based on SPI follow precipitation patterns and fewer GCMs agree on SPI and the direction of change compared to the SPEI. Long-term and extreme drought events are projected to be affected more than short-term and moderate ones. Based on an analysis of PBS curves, especially based on SPEI, droughts are projected to become more severe in the future. The development of PBS curves is a novel feature in this study and will provide policymakers with important tools for analyzing future drought risks, vulnerabilities and help build drought resilience. The PBS curves can be replicated for studies around the world for drought assessment under climate change.  相似文献   

9.
Regional extreme cold events have changed notably with recent global warming.Understanding how these cold extremes change in China is an urgent issue.This study examines the responses of the dominant mode of China coldwave intensity (CWI) to global warming by comparing observations with simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4).The leading modes of the CWI derived from empirical orthogonal function (EOF) analysis have different features in different epochs.During the cold period (1957-1979),the leading mode is characterized by centers of extreme values of CWI in northern China; while during the warm period (1980-2009),the leading mode features two maximum loading centers over northern and southern China.The southward extension of the extreme value center is associated with an increase in the intensity of coldwave variations in southern China relative to previous decades.A multi-model ensemble of seven state-of-the-art climate models shows an extension of the maximum loading of the CWI leading mode into southern China by the end of the 21st century (2080-2099) under the A1B global warming scenario (atmospheric CO2 concentration of 720 ppm).These results indicate that the primary response of the leading mode of CWI to global warming might be a southward extension of the extreme value center.This response may be associated with the southward shift of the storm track observed during recent decades.A significant change in the baroclinic growth rates around 40°N is accompanied by a consistent change in synoptic eddies in the troposphere,which may indicate a shift in the preferred latitude for the growth of eddies.As a result,the storm track tends to move southward,suggesting that southern China may experience increased storminess due to increased baroclinic instability in the troposphere.  相似文献   

10.
Maximum Wind Speed Changes over China   总被引:1,自引:0,他引:1       下载免费PDF全文
In this study,the maximum wind speed(WSmax) changes across China from 1956 to 2004 were analyzed based on observed station data,and the changes of WS max for 2046-2065 and 2080-2099 are projected using three global climate models(GFDLCM20,CCCMACGCM3,and MRICGCM2) that have participated in the IPCC Fourth Assessment Report(AR4).The observed annual and seasonal WS max and the frequency of gale days showed obvious declining trends.The annual WS max decreased by approximately 1.46 m s-1 per decade,and the number of gale days decreased by 3.0 days per decade from 1956 to 2004.The amplitudes of the annual and seasonal WS max decreases are larger than those of the annual and seasonal average wind speeds(WSavg).The weakening of the East Asian winter and summer monsoons is the cause for the distinct decreases of both WS max and WS avg over the whole China.The decrease of WS max in the southeast coastal areas of China is related to the reduced intensity of cold waves in China and the decreasing number(and decreasing intensity) of land-falling typhoons originated in the Northwest Pacific Ocean.The global climate models GFDLCM20,MRICGCM2,and EBGCM(the ensemble of above mentioned three global climate models) consistently suggest that the annual and seasonal WS max values will decrease during 2046-2065 and 2080-2099 relative to 1981-2000.The models also suggest that decreases in WS max for whole China during 2046-2065 and 2080-2099 are related to both the reduced intensity of cold waves and the reduced intensity of the winter monsoon,and the decrease in WS max in the southeast coastal areas of China is corresponding to the decreasing number of tropical cyclones over the Northwest Pacific Ocean in the summer during the same periods.  相似文献   

11.
Jinwon Kim 《Climatic change》2005,68(1-2):153-168
The effects of increased atmospheric CO2 on the frequency of extreme hydrologic events in the Western United States (WUS) for the 10-yr period of 2040–2049 are examined using dynamically downscaled regional climate change signals. For assessing the changes in the occurrence of hydrologic extremes, downscaled climate change signals in daily precipitation and runoff that are likely to indicate the occurrence of extreme events are examined. Downscaled climate change signals in the selected indicators suggest that the global warming induced by increased CO2 is likely to increase extreme hydrologic events in the WUS. The indicators for heavy precipitation events show largest increases in the mountainous regions of the northern California Coastal Range and the Sierra Nevada. Increased cold season precipitation and increased rainfall-portion of precipitation at the expense of snowfall in the projected warmer climate result in large increases in high runoff events in the Sierra Nevada river basins that are already prone to cold season flooding in todays climate. The projected changes in the hydrologic characteristics in the WUS are mainly associated with higher freezing levels in the warmer climate and increases in the cold season water vapor influx from the Pacific Ocean.  相似文献   

12.
Climate change caused by anthropogenic activities has generated a variety of research focusing on investigating the past climate, predicting the future climate and quantifying the change in climate extreme events by using different climate models. Climate extreme events are valuable to evaluate the potential impact of climate change on human activities, agriculture and economy and are also useful to monitor the climate change on global scale. Here, a Regional Climate Model (RCM) simulation is used to study the future variations in the temperature extreme indices, particularly change in frequency of warm and cold spells duration over Pakistan. The analyses are done on the basis of simulating two 30 years simulations with the Hadley Center’s RCM PRECIS, at a horizontal resolution of 50 km. Simulation for the period 1961–1990 represents the recent climate and simulation for the period 2071–2100 represents the future climate. These simulations are driven by lateral boundary conditions from HadAM3P GCM of Hadley centre UK. For the validation of model, observed mean, maximum and minimum temperatures for the period 1961–1990 at all the available stations in Pakistan are first averaged and are then compared with the PRECIS averaged grid-box data. Also the observed monthly gridded data set of Climate Research Unit (UK) data is used to validate the model. Temperature indices in the base period as well as in future are then calculated and the corresponding change is observed. Percentile based spatial change of temperature shows that in summer, increase in daily minimum temperature is more as compared to the increase of daily maximum temperature whereas in winter, the change in maximum temperature is high. The occurrence of annual cold spells shows significantly decreasing trend while for warm spells there is slight increasing trend over Pakistan.  相似文献   

13.
This study assesses future climate change over East Asia using the Global/Regional Integrated Model system—Regional Model Program (RMP). The RMP is forced by two types of future climate scenarios produced by the Hadley Center Global Environmental Model version 2 (HG2); the representative concentration pathways (RCP) 4.5 and 8.5 scenarios for the intergovernmental panel on climate change fifth assessment report (AR5). Analyses for the current (1980–2005) climate are performed to evaluate the RMP’s ability to reproduce precipitation and temperature. Two different future (2006–2050) simulations are compared with the current climatology to investigate the climatic change over East Asia centered in Korea. The RMP satisfactorily reproduces the observed seasonal mean and variation of precipitation and temperature. The spatial distribution of the simulated large-scale features and precipitation by the RMP is generally less reflective of current climatic conditions than that is given by the HG2, but their inter-annual variations in East Asia are better captured by the RMP. Furthermore, the RMP shows higher reproducibility of climate extremes including excessive heat wave and precipitation events over South Korea. In the future, strong warming is distinctly coupled with intensified monsoonal precipitation over East Asia. In particular, extreme weather conditions are increased and intensified over South Korea as follows: (1) The frequency of heat wave events with temperature greater than 30 °C is projected to increase by 131 and 111 % in the RCP 8.5 and 4.5 downscaling, relative to the current climate. (2) The RCP 8.5 downscaling shows the frequency and variability of heavy rainfall to increase by 24 and 31.5 %, respectively, while the statistics given by the RCP 4.5 downscaling are similar to those of the current climate.  相似文献   

14.
China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21. Additionally, the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP). Sea surface temperature changes in the Pacific, Indian, and Atlantic Oceans all contributed to the heavy rainfall in China, but the Atlantic and Indian Oceans seem to have played dominant roles. Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward, inducing cold surges in China. Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season. Although it is known that global warming can increase the frequency of extreme weather and climate events, its influences on individual events still need to be quantified.Additionally, the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.  相似文献   

15.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.  相似文献   

16.
Influence of SST biases on future climate change projections   总被引:1,自引:0,他引:1  
We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977?C1999 in the historical period and 2077?C2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean?Catmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.  相似文献   

17.
近年来,城市气候变化问题引起高度关注.综合IPCC第一工作组第六次评估报告(IPCC AR6)关于气候变暖背景下城市对极端天气气候事件影响的评估,本文得到以下科学认识:城市化加剧了局部气候变暖,全球许多城市都面临更多更强的高温热浪事件;城市化使得诸多城市区域及其下风向极端降水增加,地表径流加强;沿海城市受到日益加剧的与...  相似文献   

18.
文中对IPCC第六次评估报告第二工作组报告关于观测和预估的气候变化影响与风险方面的主要结论进行了解读。报告表明,气候变化已经对自然和人类系统造成了广泛的不利影响,尤其是气候变化下的复合风险和极端事件呈现日益加剧和频繁的趋势。目前,不同地区和部门的关键风险已多达127种,且随着气候变暖以及生态社会脆弱性的加剧,将对人类和生态系统造成更加普遍和不可逆的影响。相对第五次评估报告,本报告进一步扩展了风险的内涵,归纳了8个代表性关键风险,更加全面地评估了5个“关注理由”的风险水平,评估结果有利于加深对于气候变化影响的认识和及时制定行动对策。  相似文献   

19.
An analysis of simulated future surface climate change over the southern half of Korean Peninsula using a RegCM3-based high-resolution one-way double-nested system is presented. Changes in mean climate as well as the frequency and intensity of extreme climate events are discussed for the 30-year-period of 2021–2050 with respect to the reference period of 1971–2000 based on the IPCC SRES B2 emission scenario. Warming in the range of 1–4°C is found throughout the analysis region and in all seasons. The warming is maximum in the higher latitudes of the South Korean Peninsula and in the cold season. A large reduction in snow depth is projected in response to the increase of winter minimum temperature induced by the greenhouse warming. The change in precipitation shows a distinct seasonal variation and a substantial regional variability. In particular, we find a large increase of wintertime precipitation over Korea, especially in the upslope side of major mountain systems. Summer precipitation increases over the northern part of South Korea and decreases over the southern regions, indicating regional diversity. The precipitation change also shows marked intraseasonal variations throughout the monsoon season. The temperature change shows a positive trend throughout 2021–2050 while the precipitation change is characterized by pronounced interdecadal variations. The PDF of the daily temperature is shifted towards higher values and is somewhat narrower in the scenario run than the reference one. The number of frost days decreases markedly and the number of hot days increases. The regional distribution of heavy precipitation (over 80 mm/day) changes considerably, indicating changes in flood vulnerable regions. The climate change signal shows pronounced fine scale signal over Korea, indicating the need of high-resolution climate simulations  相似文献   

20.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号