首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

3.
Tourmaline-rich rocks associated with clastic metasedimentary rocks of Carboniferous age occur in the Cinco Villas massif, western Pyrenees. Three types of tourmaline-rich rocks were distinguished: (1) Fine-grained stratiform tourmaline-rich rocks, which are associated with carbonaceous metapelites (TR1); (2) stratabound tourmaline-rich rocks, associated with metapelites in the contact aureole of the Aya granitoid pluton (TR2); (3) stratabound to massive tourmaline-rich rocks, associated with psammopelites in contact with granites and pegmatites (TR3). Tourmalines belong to the schorl–dravite solid solution series and have a wide compositional range, from nearly end-member dravite for TR1 tourmalines to schorl for TR3 tourmalines; TR2 tourmalines have intermediate compositions. The Fe/(Fe+Mg) typically varies between 0.02 and ≈0.55, increasing from TR1 to TR3. The TR1 tourmalines commonly display a discontinuous chemical zoning with Fe-rich green cores (8–8.5% FeO) and Mg-rich colorless rims (10–11% MgO). In contrast, crystals that exhibit fine growth lamellae appear to lack significant chemical zoning. Oxygen and hydrogen isotope compositions also reveal major differences between TR1 and TR3 tourmalines, the former displaying heavier δ18O values (17.7–19‰) and δD values (−35 to −42‰) than TR3 tourmalines 11 to 13‰ and −47 to −76‰, respectively. The TR2 tourmalines show intermediate values of 11.3 to 14.6‰ for δ18O and −40 to −55‰ for δD. Linear and continuous chemical variations obtained for major and trace elements of the whole rocks reflect mixing between clay-rich and quartz-rich end-members, indicative that some tourmaline-rich rocks contain a significant detrital component. Chondrite normalized REE (rare earth element) patterns of tourmaline-rich rocks are similar to those of surrounding unaltered clastic metasediments, except for some TR1 rocks which are characterized by low contents of ΣREE. Mass-balance calculations show that tourmaline-forming processes plus metamorphism led to mass and volume changes at mesoscopic scales (≈10% for the TR1 tourmalinites). Silicon, Fe, Mn, and REE elements were partially lost from sedimentary rocks, whereas Mg and particularly B were added to pelitic sediments. Available data, nevertheless, do not allow an assessment of the boron source. Formation of the TR1 tourmaline-rich rocks probably was the net result of several processes, including direct precipitation from B-rich hydrothermal fluids or colloids, early diagenetic reactions of carbonaceous pelitic sediments with these fluids, and subsequent recrystallization during regional metamorphism. The TR2 tourmaline-rich rocks mainly developed by metamorphic recrystallization of TR1. Tourmaline-rich rocks and veins adjacent to pegmatites and granitic rocks (TR3) are the result of boron metasomatism; the primary boron having been recycled from stratiform tourmalinites during regional metamorphism and magmatism. Received: 18 November 1996 / Accepted: 25 April 1997  相似文献   

4.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

5.
Chromite compositions in komatiites are influenced by metamorphicprocesses, particularly above 500°C. Metamorphosed chromiteis substantially more iron rich than igneous precursors, asa result of Mg–Fe exchange with silicates and carbonates.Chromite metamorphosed to amphibolite facies is enriched inZn and Fe, and depleted in Ni, relative to lower metamorphicgrades. Relative proportions of the trivalent ions Cr3+, Al3+and Fe3+ are not greatly modified by metamorphism up to loweramphibolite facies, although minor Fe3+ depletion occurs duringtalc–carbonate alteration at low temperature. SignificantAl is lost from chromite cores above 550°C, as a resultof equilibration with fluids in equilibrium with chlorite. ElevatedZn content in chromite is restricted to rocks with low (metamorphic)Mg/Fe ratios, and is the result of introduction of Zn duringlow-temperature alteration, with further concentration and homogenizationduring prograde metamorphism. Cobalt and Mn also behave similarly,except where carbonate minerals are predominant in the metamorphicassemblage. Chromite at amphibolite facies is typically extensivelyreplaced by magnetite. This is the result of incomplete metamorphicreaction between chromite and chlorite-bearing silicate assemblages.Magnetite compositions at the inner chromite–magnetiteboundary are indicators of metamorphic grade. KEY WORDS: chromite; komatiite; spinel; metamorphism; Zn  相似文献   

6.
Lycian ophiolites located in the Western Taurides, are cut at all structural levels by dolerite and gabbro dikes. The dolerite dikes from this area are both pristine and metamorphosed. The non-metamorphosed dikes are observed both in the peridotites and in the metamorphic sole rocks. Accordingly, the non-metamorphosed dikes cutting the metamorphic sole were generated after cooling of the metamorphic sole rocks. The metamorphosed dolerite dikes are only observed in the peridotites. The physical conditions and timing of the metamorphism for the metamorphosed dolerite dikes are similar to those of the metamorphic sole rocks of the Lycian ophiolites suggesting that the metamorphosed dolerite dikes were metamorphosed together with the metamorphic sole rocks. Therefore, the dike injections in the western part of the Tauride Belt Ophiolites occurred before and after the generation of the metamorphic sole rocks. All metamorphosed and non-metamorphosed dikes are considered to have the same origin and all of them are subduction-related as inferred from whole-rock geochemistry and lead isotopes. Lead isotope compositions of whole rocks of both dike groups cluster in a narrow field in conventional Pb isotope diagrams (206Pb/204Pb = 18.40–18.64; 207Pb/204Pb = 15.56–15.58; 208Pb/204Pb = 38.23–38.56) indicating a derivation from an isotopically homogeneous source. On the 207Pb/204Pb versus 206Pb/204Pb diagram, isotope compositions of the dikes plot slightly below the orogen curve suggesting contributions from mantle reservoir enriched by subducted oceanic lithosphere. Such a signature is typical of island arc magmatic rocks and supports the formation of the investigated rocks in a subduction-related environment.  相似文献   

7.
Carbon and oxygen isotopic analyses of silicate and carbonate minerals indicate that isotopic compositions in metasediments of the Wallace Formation (Belt Supergroup) exposed northwest of the Idaho batholith have been affected by both prograde and retrograde fluid-rock interaction. Silicates retain isotopic fractionations that reflect equilibration at peak metamorphic temperatures. In contrast, calcite oxygen isotopic compositions range from δ18O(Calcite)=+2.3 to +18.6‰ SMOW (standard mean oceanic water) and indicate that some calcites have exchanged with low-δ18O meteorichydrothermal fluids. Values of Δ18O (Quartz-Calcite) as large as +15.5 clearly indicate that the isotopic depletion of these calcites postdates the peak of regional metamorphism. Carbon isotopic compositions of 18O-depleted calcites are not significantly shifted relative to δ13C values in undepleted calcites, suggesting that the retrograde fluid was carbon-poor. Petrographically, retrograde fluid-rock interaction is associated with the occurrence of fine-grained, highly-luminescent calcite overgrowths on less-luminescent, metamorphic calcites, slight to moderate argillic alteration, and pseudomorphing of scapolite porphyroblasts by fine-grained albite. Retrograde isotopic depletions may be related to shallow meteoric-hydrothermal fluid flow developed around the Idaho batholith after intrusion and rapid uplift of the terrane. Peak metamorphic isotopic compositions in the Wallace Formation reflect mineralogically heterogeneous protolith compositions and isotopic fractionation due to devolatilization and/or infiltration. Variability in oxygen isotopic compositions on the order of 4–6‰ within the same rock type can be attributed to the combined effects of inherited isotopic compositions and isotopic shifts resulting from prograde devolatilization. Isotopic and compositional heterogeneity on the scale of mm to m precludes generalization of isotopic gradients on a regional scale. The isotopic data presented here, and metamorphic fluid compositions determined in previous studies, are best reconciled with heterogeneous bulk compositions, dominantly channelized prograde and retrograde fluid flow, and locally low fluid-rock ratios.  相似文献   

8.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
In order to reconstruct the formation and exhumation mechanisms of UHP metamorphic terrains, the Chinese Continental Scientific Drilling Program (CCSD) has been carried out in Donghai of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt, East China. Eclogite, gneiss, amphibolite (retrograded from eclogite), ultramafic rocks, and minor schist and quartzite have been drilled. Aiming to reveal the fluid behaviour in a vertical sequence of an UHP slab, we investigated fluid inclusion and oxygen isotope characteristics of selected drillcores from the main hole and the pilot-holes PP2 and ZK 703 of the CCSD. More than 540 laser-ablation oxygen isotope analyses on garnet, omphacite, quartz, kyanite, amphibole, phengite, rutile, epidote, amphibole, plagioclase, and biotite from various rocks in the depth range of 0–3,000 m (mainly eclogite and gneiss) show that the investigated rocks can be divided into two groups: 18O-depleted rocks (as low as δ18O = −7.4‰ for garnet) indicate interaction with cold climate meteoric waters, whereas 18O-normal rocks (with bulk δ18O > +5.6‰) have preserved the O-isotopic compositions of their protoliths. Meteoric water/rock interaction has reached depths of at least 2,700 m. Oxygen isotope equilibrium has generally been achieved. Isotopic compositions of mineral phases are homogeneous on a mm to cm scale regardless of lithology, but heterogeneous on the scale of a few metres. Oxygen isotope distributions in the vertical sections favour an “in situ” origin of the UHP metamorphic rocks. The very negative δ18O eclogites usually have higher hydroxyl-mineral contents than the normal δ18O rocks, indicating higher water content during UHP metamorphism. Fluid inclusion data suggest that rocks with depleted 18O compositions have had different fluid histories compared to those with normal δ18O values. Rocks with depleted 18O mainly have primary medium-to-high salinity inclusions in omphacite, kyanite and quartz, and abundant secondary low-salinity or pure water inclusions in quartz, indicating a high-salinity-brine-dominated fluid system during peak UHP metamorphism; no carbonic inclusions have been identified in these rocks. By contrast, primary very high-density CO2 inclusions are commonly found in the rocks with normal δ18O values. These observations suggest that fluid and oxygen isotope composition of minerals are related and reflect variable degrees of alterations of the Dabie-Sulu UHP metamorphic rocks.  相似文献   

10.
Zn- and Cu-rich massive sulfide ores of volcanogenic origin [volcanogenic massive sulfide (VMS) deposits] occur as stratiform/stratabound lenses of variable size hosted by gneisses, amphibolites, and schists of the Areachap Group, in the Northern Cape Province of South Africa. The Areachap Group represents the highly deformed and metamorphosed remnants of a Mesoproterozoic volcanic arc that was accreted onto the western margin of the Kaapvaal Craton during the ∼1.0–1.2 Ga Namaquan Orogeny. Sulfur isotope data (δ34S) are presented for 57 sulfide separates and one barite sample from five massive sulfide occurrences in the Areachap Group. Although sulfides from each site have distinct sulfur isotope values, all δ34S values fall within a very limited range (3.0‰ to 8.5‰). Barite has a δ34S value of 18.5‰, very different from that of associated sulfides. At one of the studied sites (Kantienpan), a distinct increase in δ34S of sulfides is observed from the massive sulfide lens into the disseminated sulfides associated with a distinct footwall alteration zone. Sulfide–sulfide and sulfide–barite mineral pairs which recrystallized together during amphibolite- and lower granulite facies metamorphism are not in isotopic equilibrium. Sulfur isotope characteristics of sulfides and sulfates of the Zn–Cu ores in the Areachap Group are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and unsedimented mid-ocean ridges. It is thus concluded that profound recrystallization and textural reconstitution associated with high-grade regional metamorphism of the massive sulfide ores of the Areachap Group did not result in extensive sulfur isotopic homogenization. This is similar to observations in other metamorphosed VMS deposit districts and confirms that massive sulfide ores remain effectively a closed system for sulfur isotopes for both sulfides and sulfates during metamorphism.  相似文献   

11.
Whole-rock chemical composition and 11B/10B isotope ratios in tourmaline was investigated to study the geochemical recycling of boron during the evolution of the Andean basement from the Palaeozoic to Mesozoic. In the basement (Cambrian to Ordovician high-grade paragneisses, migmatites and orthogneisses, the Eocambrian Puncoviscana Formation, and Paleozoic-Mesozoic granitoid igneous rocks) whole-rock B contents are generally below 100 ppm, but B contents of ˜1 wt% are found in cogenetic aplite and pegmatite dikes and in tourmaline–quartz rocks. In the metasedimentary rocks, no systematic variation in B content because of metamorphic grade and no correlation of B with other incompatible elements are apparent. Tourmalines from the high-grade metamorphic basement yield δ11B values ranging from −11.2 to −6.8‰ and isotope fractionation during migmatisation was small. Metamorphic tourmalines from the Puncoviscana Formation have δ11B values between −6.3 and −5.8‰. The calculated (corrected for fractionation) δ11B values of −6 to −2‰ for the sedimentary protolith of the metamorphic basement indicate a continental B source with subordinate marine input. Tourmalines from Palaeozoic and Mesozoic granitoids display an identical range of δ11B values from −12 to −5.3‰ and indicate a similarly homogeneous B source throughout time. Tourmalines from pegmatites and tourmaline–quartz rocks record the average δ11B values of the parental granitic magma. We assume that B in the Palaeozoic and Mesozoic granitoids is derived from the local metamorphic basement supporting the hypothesis that recycling of the lower Palaeozoic crust is the dominant process in granitic magma formation from Palaeozoic to Mesozoic. Received: 15 December 1999 / Accepted: 11 July 2000  相似文献   

12.
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ^18O values range from -0.3‰- -0.1‰) and lighter oxygen isotope (their δ^18O values range from -22.1‰- -19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later disso- lution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ^13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ^18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous cal- cites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ^13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ^18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.  相似文献   

13.
Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid–rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰; omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane−garnet = 1.37 ± 0.24‰ and Δomphacite−garnet = 0.72 ± 0.24‰. For the estimated metamorphic temperature of 500 °C, these fractionations yield coefficients in the equation Δ = A * 106/T 2 (in Kelvin) of Aglaucophane−garnet = 0.87 ± 0.15 and Aomphacite−garnet = 0.72 ± 0.24. A fractionation of Δglaucophane–actinolite = 0.94 ± 0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic equilibrium is only observed at hand-specimen scale, at an outcrop scale isotopic compositional differences occur among adjacent rocks. This heterogeneity reflects metre-scale compositional variations that developed during hydrothermal alteration by seawater and were subsequently inherited by the high-pressure metamorphic rocks. Received: 4 January 1999 / Accepted: 7 July 1999  相似文献   

14.
We have detected micrometre-scale differences in Fe and Si stable isotope ratios between coexisting minerals and between layers of banded iron formation (BIF) using an UV femtosecond laser ablation system connected to a MC-ICP-MS. In the magnetite–carbonate–chert BIF from the Archean Old Wanderer Formation in the Shurugwi Greenstone Belt (Zimbabwe), magnetite shows neither intra- nor inter-layer trends giving overall uniform δ56Fe values of 0.9‰, but exhibits intra-crystal zonation. Bulk iron carbonates are also relatively uniform at near-zero values, however, their individual δ56Fe value is highly composition-dependent: both siderite and ankerite and mixtures between both are present, and δ56Fe end member values are 0.4‰ for siderite and −0.7‰ for ankerite. The data suggest either an early diagenetic origin of magnetite and iron carbonates by the reaction of organic matter with ferric oxyhydroxides catalysed by Fe(III)-reducing bacteria; or more likely an abiotic reaction of organic carbon and Fe(III) during low-grade metamorphism. Si isotope composition of the Old Wanderer BIF also shows significant variations with δ30Si values that range between −1.0‰ and −2.6‰ for bulk layers. These isotope compositions suggest rapid precipitation of the silicate phases from hydrothermal-rich waters. Interestingly, Fe and Si isotope compositions of bulk layers are covariant and are interpreted as largely primary signatures. Moreover, the changes of Fe and Si isotope signatures between bulk layers directly reflect the upwelling dynamics of hydrothermal-rich water which govern the rates of Fe and Si precipitation and therefore also the development of layering. During periods of low hydrothermal activity, precipitation of only small amounts of ferric oxyhydroxide was followed by complete reduction with organic carbon during diagenesis resulting in carbonate–chert layers. During periods of intensive hydrothermal activity, precipitation rates of ferric oxyhydroxide were high, and subsequent diagenesis triggered only partial reduction, forming magnetite–carbonate–chert layers. We are confident that our micro-analytical technique is able to detect both the solute flux history into the sedimentary BIF precursor, and the BIF’s diagenetic history from the comparison between coexisting minerals and their predicted fractionation factors.  相似文献   

15.
Retrograde interdiffusion is widely proposed as the dominant factor in producing the stable isotopic fractionation among minerals in slowly cooled igneous and metamorphic rocks. Mineral zonation consistent with interdiffusion of stable isotopes has never been directly observed, however, leaving doubt as to the mechanism responsible for the bulk-mineral isotopic compositions commonly measured. Ion microprobe analyses of oxygen isotope ratios in magnetite were combined with conventional bulk mineral analyses and diffusion modeling to document the relationship between mineral zonation and the mechanism of retrogression inferred from bulk mineral data. Two samples of magnetitebearing, quartzo-feldspathic Lyon Mountain gneiss from the Adirondack mountains, N.Y. were studied in detail. Conventional stable isotope analysis of both samples indicates that isotope thermometers are discordant and were reset by as much as 200°C from the estimated peak temperature of 750°C. The relative order of apparent temperatures recorded by various thermometers differs between the two samples, however, with T qtz-fspT mt-qtz and T mt-fsp in one sample and T qtz-fsp<T mt-qtz and T mt-fsp in the other. Diffusion modeling using the Fast Grain Boundary model shows that the former pattern of apparent temperatures is consistent with closed system interdiffusion during cooling, whereas the latter is not. The modeling predicts that 0.5 mm diameter magnetite grains common to this rock type will contain isotopic zonation of 1‰ (rims lower in δ18O than cores), and that the cores of smaller (0.1 mm) grains will be similarly lower than to the cores of large (0.5 mm) grains. Ion microprobe analysis reveals that the zoning patterns of magnetite grains from the first sample contain clear core to rim zonation in multiple grains (Δcore-rim=1.1±0.4‰) and predicted grain-size vs core composition variations, consistent with diffusion-controlled resetting of bulk mineral fractionations. In contrast, the second sample shows irregular inter-and intra-granular variations over an 8‰ range, consistent with open system alteration. These results provide direct documentation of the importance of interdiffusion in affecting stable isotope distributions in slowly cooled rocks. The correlations of bulk-mineral resetting with zonation show that bulk mineral data, when interpreted with detailed modeling, can be used to determinate what processes controlling retrogression.  相似文献   

16.
Vein-type tin mineralization in the Dadoushan deposit, Laochang ore field, Gejiu district, SW China, is predominantly hosted in Triassic carbonate rocks (Gejiu Formation) over cupolas of the unexposed Laochang equigranular granite intrusion. The most common vein mineral is tourmaline, accompanied by skarn minerals (garnet, diopside, epidote, phlogopite) and beryl. The main ore mineral is cassiterite, accompanied by minor chalcopyrite, pyrrhotite, and pyrite, as well as scheelite. The tin ore grade varies with depth, with the highest grades (~1.2 % Sn) prevalent in the lower part of the vein zone. Muscovite 40Ar–39Ar dating yielded a plateau age of 82.7 ± 0.7 Ma which defines the age of the vein-type mineralization. Measured sulfur isotope compositions (δ 34S = −4.1 to 3.9 ‰) of the sulfides (arsenopyrite, chalcopyrite, pyrite, and pyrrhotite) indicate that the sulfur in veins is mainly derived from a magmatic source. The sulfur isotope values of the ores are consistent with those from the underlying granite (Laochang equigranular granite, −3.7 to 0.1 ‰) but are different from the carbonate wall rocks of the Gejiu Formation (7.1 to 11.1 ‰). The calculated and measured oxygen and hydrogen isotope compositions of the ore-forming fluids (δ 18OH2O = −2.4 to 5.5 ‰, δD = −86 to −77 ‰) suggest an initially magmatic fluid which gradually evolved towards meteoric water during tin mineralization.  相似文献   

17.
Tourmaline in Proterozoic Massive Sulfide Deposits from Rajasthan, India   总被引:1,自引:0,他引:1  
We have analyzed the chemical composition and boron isotope composition of tourmaline from tourmalinites, granite and a quartz-tourmaline vein from the Deri ore zone and from a pegmatitic band in the Rampura-Agucha ore body. These two Proterozoic massive sulfide deposits occur in the Aravalli-Delhi orogenic belt, Rajasthan, northwest India. Tourmaline from stratiform tourmalinites closely associated with the massive sulfides in the Deri deposit have preserved their original chemical compositions despite regional and thermal metamorphism in the area. These tourmalines have low Fe/(Fe + Mg) ratios (0.19–0.30; mean 0.26) that suggest formation close to the sediment-sea water interface. The δ11B values (−15.5 and −16.4‰) are compatible with boron derived from leaching of argillaceous sediments and/or felsic volcanics underlying the original massive sulfide deposit during its formation. Boron isotope compositions measured in tourmaline from a post-ore granite and quartz-tourmaline vein in the Deri deposit indicate that boron in these tourmalines was derived from the tourmalinites produced during ore formation. The boron isotope systematics of a coarse brown tourmaline crystal from a pegmatitic band on the hanging wall contact of the Rampura-Agucha deposit indicate that 45 ± 25% of the boron within the original tourmaline was lost during upper amphibolite facies regional metamorphism. Received: 3 April 1996 / Accepted: 11 April 1996  相似文献   

18.
Variations in the isotopic composition of Fe in Late Archean to Early Proterozoic Banded Iron Formations (BIFs) from the Transvaal Supergroup, South Africa, span nearly the entire range yet measured on Earth, from –2.5 to +1.0‰ in 56Fe/54Fe ratios relative to the bulk Earth. With a current state-of-the-art precision of ±0.05‰ for the 56Fe/54Fe ratio, this range is 70 times analytical error, demonstrating that significant Fe isotope variations can be preserved in ancient rocks. Significant variation in Fe isotope compositions of rocks and minerals appears to be restricted to chemically precipitated sediments, and the range measured for BIFs stands in marked contrast to the isotopic homogeneity of igneous rocks, which have δ56Fe=0.00±0.05‰, as well as the majority of modern loess, aerosols, riverine loads, marine sediments, and Proterozoic shales. The Fe isotope compositions of hematite, magnetite, Fe carbonate, and pyrite measured in BIFs appears to reflect a combination of (1) mineral-specific equilibrium isotope fractionation, (2) variations in the isotope compositions of the fluids from which they were precipitated, and (3) the effects of metabolic processing of Fe by bacteria. For minerals that may have been in isotopic equilibrium during initial precipitation or early diagenesis, the relative order of δ56Fe values appears to decrease in the order magnetite > siderite > ankerite, similar to that estimated from spectroscopic data, although the measured isotopic differences are much smaller than those predicted at low temperature. In combination with on-going experimental determinations of equilibrium Fe isotope fractionation factors, the data for BIF minerals place additional constraints on the equilibrium Fe isotope fractionation factors for the system Fe(III)–Fe(II)–hematite–magnetite–Fe carbonate. δ56Fe values for pyrite are the lowest yet measured for natural minerals, and stand in marked contrast to the high δ56Fe values that are predicted from spectroscopic data. Some samples contain hematite and magnetite and have positive δ56Fe values; these seem best explained through production of high 56Fe/54Fe reservoirs by photosynthetic Fe oxidation. It is not yet clear if the low δ56Fe values measured for some oxides, as well as Fe carbonates, reflect biologic processes, or inorganic precipitation from low-δ56Fe ferrous-Fe-rich fluids. However, the present results demonstrate the great potential for Fe isotopes in tracing the geochemical cycling of Fe, and highlight the need for an extensive experimental program for determining equilibrium Fe isotope fractionation factors for minerals and fluids that are pertinent to sedimentary environments.  相似文献   

19.
RUMBLE  DOUGLAS  III 《Journal of Petrology》1978,19(2):317-340
The rocks of the Clough Formation, Black Mountain, New Hampshire,were regionally metamorphosed at 5.5 (±0.5) kb and 495°± 10 °C during the Acadian orogeny. Mineral assemblagesattained chemical equilibrium during metamorphism on the scaleof single sedimentary beds up to 1 m thick. An aqueous, intergranular,metamorphic fluid was probably present; however, the concentrationsof the species H2O, H2, and O2 as well as the abundance of 18Oin the fluid varied from bed to bed. Neither isobaric nor polybaricosmotic equilibrium of H2 was attained between sedimentary beds.Fluid composition was controlled in each bed by the inherentbuffer capacity of the solid phases. Despite the effects ofprogressive dehydration during metamorphism, the buffer capacitiesof the mineral assemblages were sufficiently great that vestigesof premetamorphic heterogeneity of volatile components havebeen preserved.  相似文献   

20.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号