首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations (GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction for the Lesser Antilles.  相似文献   

2.
Accurate estimates of the ground motions that occurred during damaging earthquakes are a vital part of many aspects of earthquake engineering, such as the study of the size and cause of the uncertainties within earthquake risk assessments. This article compares a number of methods to estimate the ground shaking that occurred on Guadeloupe (French Antilles) during the 21st November 2004 (M w 6.3) Les Saintes earthquake, with the aim of providing more accurate shaking estimates for the investigation of the sources of uncertainties within loss evaluations, based on damage data from this event. The various techniques make differing use of the available ground-motion recordings of this earthquake and by consequence the estimates obtained by the different approaches are associated with differing uncertainties. Ground motions on the French Antilles are affected by strong local site effects, which have been extensively investigated in previous studies. In this article, use is made of these studies in order to improve the shaking estimates. It is shown that the simple methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar to those predicted by empirical ground-motion models and that these are uniform across the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take account of the spatial correlation in motions demonstrate that shaking within roughly 10 km of a recording station (covering a significant portion of the investigated area) can be defined with reasonable accuracy but that motions at more distant points are not well constrained.  相似文献   

3.
The Transoceanic 1755 Lisbon Tsunami in Martinique   总被引:1,自引:0,他引:1  
On 1 November 1755, a major earthquake of estimated M w=8.5/9.0 destroyed Lisbon (Portugal) and was felt in the whole of western Europe. It generated a huge transoceanic tsunami that ravaged the coasts of Morocco, Portugal and Spain. Local extreme run-up heights were reported in some places such as Cape St Vincent (Portugal). Great waves were reported in the Madeira Islands, the Azores and as far as the Antilles (Caribbean Islands). An accurate search for historical data allowed us to find new (unpublished) information concerning the tsunami arrival and its consequences in several islands of the Lesser Antilles Arc. In some places, especially Martinique and the Guadeloupe islands, 3?m wave heights, inundation of low lands, and destruction of buildings and boats were reported (in some specific locations probably more enclined to wave amplification). In this study, we present the results of tsunami modeling for the 1755 event on the French island of Martinique, located in the Lesser Antilles Arc. High resolution bathymetric grids were prepared, including topographic data for the first tens of meters from the coastline, in order to model inundations on several sites of Martinique Island. In order to reproduce as well as possible the wave coastal propagation and amplification, the final grid was prepared taking into account the main coastal features and harbour structures. Model results are checked against historical data in terms of wave arrival, polarity, amplitude and period and they correlate well for Martinique. This study is a contribution to the evaluation of the tele-tsunami impact in the Caribbean Islands due to a source located offshore of Iberia and shows that an 8.5 magnitude earthquake located in the northeastern Atlantic is able to generate a tsunami that could impact the Caribbean Islands. This fact must be taken into account in hazard and risk studies for this area.  相似文献   

4.
Twenty-seven K-Ar ages have been measured on igneous rocks from islands of the Limestone Caribbees (St. Martin, St. Bartholomew, Antigua, and Grande Terre, Guadeloupe) and Martinique in the Lesser Antilles arc. Earlier paleontological data indicated that rocks on several of these islands are Eocene in age and among the oldest known in the arc.The oldest igneous activity on the islands studied is 35–40 m.y. Bifurcation of the Lesser Antilles arc north of Guadeloupe took place between 7 and 20 m.y. ago. A distinct physical overlap of older and younger volcanic arcs exists on Martinique.Our results do not support previous suggestions that the pre-Tertiary basement of the Greater Antilles extends through the Limestone Caribbees to the anomalously old, Jurassic-Cretaceous, igneous rocks of La Desirade.  相似文献   

5.
A statistical method to quantitatively assess the relative importance of unmodelled site and source effects on the observed variability (σ) in ground motions is presented. The method consists of analysis of variance (ANOVA) using the computed residuals with respect to an empirical ground-motion model for strong-motion records of various earthquakes recorded at a common set of stations. ANOVA divides the overall variance (σ 2) into the components due to site and source effects (respectively σ S 2 and σ E 2) not modelled by the ground-motion model plus the residual variance not explained by these effects (σ R 2). To test this procedure, four sets of observed strong-motion records: two from Italy (Umbria-Marche and Molise), one from the French Antilles and one from Turkey, are used. It is found that for the data from Italy, the vast majority of the observed variance is attributable to unmodelled site effects. In contrast, the variation in ground motions in the French Antilles and Turkey data is largely attributable, especially at short periods, to source effects not modelled by the ground-motion estimation equations used.  相似文献   

6.
In this short article, the possible reduction in the standard deviation of empirical ground motion estimation equations through the modelling of the effect of crustal structure is assessed through the use of ground-motion simulations. Simulations are computed for different source-to-site distances, focal depths, focal mechanisms and for crustal models of the Pyrenees, the western Alps and the upper Rhine Graben. Through the method of equivalent hypocentral distance introduced by Douglas et al. [(2004) Bull Earthquake Eng 2(1): 75–99] to model the effect of crustal structure in empirical equations, the scatter associated with such equations derived using these simulated data could be reduced to zero if real-to-equivalent hypocentral distance mapping functions were derived for every combination of mechanism, depth and crustal structure present in the simulated dataset. This is, obviously, impractical. The relative importance of each parameter in affecting the decay of ground motions is assessed here. It is found that variation in focal depth is generally more important than the effect of crustal structure when deriving the real-to-equivalent hypocentral distance mapping functions. In addition, mechanism and magnitude do not have an important impact on the decay rate.  相似文献   

7.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   

8.
As part of the effort to assess the seismic hazards of Singapore and the Malay Peninsula, representative ground motion prediction models have to be established. Seven existing attenuation relationships developed for shallow crustal earthquakes in stable continent and active tectonic regions are examined, and they are found to consistently over‐predict the ground motions of Sumatran‐fault earthquakes recently recorded in Singapore. This may be attributed to the differences in the regional crustal structures and distance ranges considered. Since the number of recorded ground motions in the region is very limited, a new set of attenuation relationships is derived based on synthetic seismograms. The uncertainties in rupture parameters, such as stress drop, focal depth, dip and rake angles, are defined according to the regional geological and tectonic settings as well as the ruptures of previous earthquakes. Ground motions are simulated for earthquakes with Mw ranging from 4.0 to 8.0, within a distance range from 174 to 1379km. Besides magnitude and distance, source‐to‐station azimuth is found to influence the amplitudes of the ground motions simulated. Thus, the azimuth is taken as an independent variable in the derived ground motion attenuation relationships. The Sumatran‐fault segments that have the potential to generate a specified level of response spectral accelerations in Singapore and Kuala Lumpur are identified based on the newly derived ground motion models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Observations from many recent strong motion events have shown the importance of local soil conditions and non-linear soil behaviour on the seismic ground response (site effects). As demonstrated by previous seismic microzoning studies (Lebrun et al.) [1]), as well as by at least three historical major earthquakes, Pointe-à-Pitre is prone to strong site effects, due to the particular geology of the area. In this paper, we present a comparison between the strong-motion data available from the stations operating on the swampy site of Pointe-à-Pitre airport and the ground motions derived from 1D non-linear finite element simulations.Results show that, for moderate to strong ground motions, 1D simulations reproduce the main characteristics of site response in terms of duration, energy distribution, amplitude and frequency content. It also shows the importance of very superficial soft layers as peat or saturated mud in low frequency site effects simulations. This point is important for further engineering studies since such very soft formations overlain by stiffer landfills are commonly expected in the Antilles context. Our work also shows that Anderson's criteria, used to quantify the goodness-of-fit of simulated ground motions to the observed ones, appear to be an interesting diagnostic tool for testing the quality of numerical simulations from an engineering point of view.  相似文献   

10.
Characterization of Earthquake Strong Ground Motion   总被引:1,自引:0,他引:1  
— Some underwater landslides are triggered by strong ground motions caused by earthquakes. This paper reviews current concepts and trends in the characterization of strong ground motion. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude-distance-soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near-fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes.  相似文献   

11.
We constructed a prototype of the basin and crustal structure model for the Kinki area, southwest of Japan, for the simulation of strong ground motions of hypothetical crustal and subduction earthquakes. We collected results of the deep seismic velocity profiles obtained by the reflection experiments and seismic imaging results, which were conducted in the Kinki area. The obtained profiles give underground velocity structures of the crust, from the surface to the subducting slab. We also gather the basin velocity structure information of the Osaka, Kyoto, Nara, and Ohmi basins. To examine the applicability of the constructed velocity structure model to the ground motion simulation, we simulated waveforms of an intermediate size event occurred near the source area of the hypothetical subduction earthquakes. Simulated ground motions using the basin and crustal velocity structure model are fairly well reproducing the observations at most of stations, and the constructed basin and crustal velocity structure model is applicable for the long-period ground motion simulations.  相似文献   

12.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

13.
One approach to model the high-frequency attenuation of spectral amplitudes of S-waves is to express the observed exponential decay in terms of Kappa (κ) factor [1]. Kappa is a significant parameter used for identifying the high-frequency attenuation behavior of ground motions as well as one of the key parameters for stochastic strong ground motion simulation method. As of now, there is not a systematic investigation of the Kappa parameter based on the recently-compiled Turkish ground motions. In this study, we examine a strong ground motion dataset from Northwestern Turkey with varying source properties, site classes and epicentral distances. We manually compute κ from the S-wave portion of each record and study both horizontal and vertical kappa values. We use traditional regression techniques to describe the (potential) relationships between kappa and selected independent variables such as the site class, distance from the source or magnitude of the event. A linear effect of magnitude on kappa is not found statistically significant for the database studied herein. We express the initial findings of a regional κ model for Northwestern Turkey as a function of site class and epicentral distances. Single station analyses at selected sites confirm the regional model. Finally, we present stochastic strong motion simulations of past events in the region using the proposed kappa model. Regardless of the magnitude, source-to-site distance and local site conditions at the stations, the high-frequency spectral decay is simulated effectively at all stations considered.  相似文献   

14.
A feasibility study of an earthquake early warning (EEW) system was conducted for the Eastern Caribbean region using scenario earthquakes, corresponding to the maximum credible earthquakes and to the earthquakes associated with a return period of 475 years. Broadband synthetic seismograms were produced at selected critical facilities, where there is potential interest in the installation of an EEW system. The expected damage was derived from the synthetic seismograms and compared with the lead-time determined for both a regional and on-site EEW configuration. Next, the Virtual Seismologist EEW algorithm, as included in SeisComP3, was tested. Additional broadband synthetic seismograms were produced for the stations in the Eastern Caribbean seismic networks in order to simulate the real time behaviour of the seismic networks during the occurrence of the synthetic earthquakes and to assess the predictive capacity of the selected ground motion prediction equation. Expected peak ground parameters and lead-times at the critical facilities constitute the major outcome of the study.  相似文献   

15.
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (M w = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.  相似文献   

16.
Continuous GPS Array and Present-day Crustal Deformation of Japan   总被引:1,自引:0,他引:1  
—A GPS array with about 1,000 permanent stations is under operation in Japan. The GPS array revealed coseismic deformations associated with large earthquakes and ongoing secular deformation in the Japanese islands. Based on daily coordinate data of the GPS stations, strain rate distribution is estimated. Most regions with a large strain rate are related to plate boundaries and active volcanoes. In addition, the Niigata-Kobe Tectonic Zone (NKTZ) is recognized as a region of large strain rate along the Japan Sea coast and in the northern Chubu and Kinki districts. This newly found tectonic zone may be related to a hypothetical boundary between the Eurasian (or Amurian) and the Okhotsk (or North America) plates. Precise observation of crustal deformation provides important boundary conditions on numerical modeling of earthquakes and other crustal activities. Appropriate computation methods of continuous deformation field are directly applicable to data assimilation for such numerical simulations.  相似文献   

17.
Strong-motion data from large (M ≥ 7.2) shallow crustal earthquakes invariably make up a small proportion of the records used to develop empirical ground motion prediction equations (GMPEs). Consequently GMPEs are more poorly constrained for large earthquakes than for small events. In this article peak ground accelerations (PGAs) observed in 38 earthquakes worldwide with M ≥ 7.2 are compared with those predicted by eight recent GMPEs. Well over half of the 38 earthquakes were not considered when deriving these GMPEs but the data were identified by a thorough literature review of strong-motion reports from the past 60 years. These data are provided in an electronic supplement for future investigations on ground motions from large earthquakes. The addition of these data provides better constraint of the between-event ground-motion variability in large earthquakes. It is found that the eight models generally provide good predictions for PGAs from these earthquakes, although there is evidence for slight under- or over-prediction of motions by some models (particularly for M > 7.6). The between-event variabilities predicted by most models match the observed variability, if data from two events (2001 Bhuj and 2005 Crescent City) that are likely atypical of earthquakes in active regions are excluded. For some GMPEs there is evidence that they are over-predicting PGAs in the near-source region of large earthquakes as well as over-predicting motions on hard rock. Overall, however, all the considered models, despite having been derived using limited data, provide reliable predictions of PGAs in the largest crustal earthquakes.  相似文献   

18.
The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.  相似文献   

19.
In recent years, many studies have been focused on the use and effectiveness of passive islotaing devices for reducing the effect of seismic ground motion on buildings. Among the available methods, one consists in isolating the structure using rubber bearings, the solution certainly the most accomplished and having the most feedback. In this study, we focused on the case of Martinique earthquake (Mw=7.4) of 29 November 2007, recorded by accelerometric stations installed at the Centre de Découverte des Sciences de la Terre (Martinique), a base-isolation building with rubber bearings. Several earthquakes are used in this paper, from moderate to strong ground motion. Ambient vibration modal analysis is first described in order to understand the elastic response of the building. The earthquake data are then interpreted, in particular to understand the mechanism of vibration of the structure and its comparison with the experimental modes previously estimated using ambient vibrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号