首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a simplified synthesis, and some performance characteristics, for 8-hydroxyquinoline (8-HOQ) covalently bonded to a chemically resistant TosoHaas TSK vinyl polymer resin. The resin was used to concentrate trace metals from stored, acidified seawater samples collected from Jellyfish Lake, an anoxic marine lake in the Palau Islands. The Mn, Fe, and Zn profiles determined from the 8-HOQ resin extraction were similar to those determined using Chelex-100 resin. The Zn and Cd profiles did not exhibit removal by sulfide “stripping” in contrast to other anoxic marine basins. The profiles of Co and Ni also exhibited elevated concentrations in the anoxic hypolimnion. The solution speciation and saturation states for the metals were calculated using revised metal-bisulfide stability constants. The calculations suggest that the MS(HS) species dominates the solution speciation for Mn, Co, Ni, Zn, Cd, and Pb. Cu(I) is modeled as the CuS or Cu(HS)2 species, while Fe(II) behaves as the free Fe2+ cation. The Mn, Co, Ni, Cu and Cd concentrations appeared to be at least 10-fold undersaturated, while the Fe(II), Zn, and Pb concentrations were close to saturation with respect to their metal sulfides.  相似文献   

2.
Freshwater concentrations confirm the pristine character of the Lena River environment as already pointed-out in a previous study with a limited set of data (Martin et al., 1993). Total dissolved concentrations of the freshwater are 13.8 ± 1.6 nM, Cu, 4.4 ± 0.1 nM, Ni, 0.054 ± 0.047 nM, Cd, 642 ± 208 nM, Fe, 0.2–0.3 nM Pb and 1.2 ± 1.0 nM, Zn. For Zn and Pb, a simple mixing of the Lena River waters with the Arctic waters is observed. Relationships with salinity suggest that for Cu, Ni and Cd, there is a mobilization of the dissolved fraction from the suspended matter, with an increase of the dissolved concentration of 1.5, 3 and 6 times, respectively. For Fe, the total dissolved concentrations follow an exponential decrease in the mixing zone and 80% of the total “dissolved” Fe is removed from the solution. For Cu, Ni, Cd and Fe, the riverine end-members are 20 nM, 12 nM, 0.3 nM and 47 nM, respectively. When considering the input of total dissolved metals to the Arctic Ocean, the fraction attributed to the freshwaters from the Arctic rivers appears to be small (4% of the input of dissolved metal to the Arctic Ocean for Cd, 27% for Cu, 11 % for Ni and 2% for Zn). Metal concentrations in the Laptev Sea and Arctic Ocean are very similar, indicating a generally homogeneous distribution in the areas sampled.  相似文献   

3.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

4.
It is shown that the data of Kremling (1983) for iron concentrations in sulphidic basin water fit to a solubility curve assuming reasonable constants for FeS in equilibrium with Fe2+, Fe(HS)2 and FeHS2. Explanations are offered for the fact that the iron and manganese concentrations are considerably lower in the Framvaren bottom water with high sulphide concentrations (6–8 mM) than in the Gotland Deep with lower sulphide concentrations (0.001–0.052 mM). For other trace metals (Co, Ni, Cu, Zn, Cd, Hg and Pb) equilibrium conditions do not seem to exist.  相似文献   

5.
The metal complexing ability of surface water of the Irish Sea has been measured by the MnO2 adsorption method. In all samples strong copper-chelating compounds are present at concentrations of 60–150 nM, with conditional stability constants (log values) of 10.0–10.4. The concentrations of Cu, Pb and Cd in the samples are 16–39 nM, 1–7 nM and 0.1–2 nM, respectively; much less than the ligand concentrations. The organic compounds form complexes with 94–98% of dissolved copper, and therefore constitute the major form of copper in surface water of the Irish Sea. Recalculation of speciation of the inorganic fraction of copper in seawater reveals that the major complex ion is that of CuCO30 (60%), followed by CuOH+ (16%) and Cu(OH)20 (16%). Complexes with borate ions form a small and rather insignificant fraction of 1%.  相似文献   

6.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

7.
Anoxic sulfidic waters provide important media for studying the effect of reducing conditions on the cycling of trace metals. In 1987–1988, dissolved and particulate trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) concentrations were determined in the water column of the anoxic Drammensfjord basins, southeastern Norway. The iminodiacetic acid type chelating resin (Chelex 100) was used for the preconcentration of trace metals. The trace metal concentrations were determined using atomic absorption spectrophotometry (AAS), differential pulse polarography (DPP), and differential pulse-anodic stripping voltammetry (DP-ASV).It was observed that the trace metals Mn and Fe were actively involved in the processes of redox cycling (oxidationreduction and precipitation-dissolution) at the O2/H2S interface. The dissolved concentrations of Mn, Fe and Co showed maxima just below the O2/H2S interface. The seasonal enhancement in the maxima of both dissolved and particulate Mn and Fe at the redox cline is mainly governed by the downward movement of water which carries oxygen. An association of Co with the Mn cycle was observed, while the total dissolved Ni was decreased by only 10–35% in the anoxic waters. The dissolved concentrations of Cu, Zn, Pb and, to a lesser extent, Cd decreased in the anoxic zone.  相似文献   

8.
High precision total CO2 (TCO2) data are presented from the NW Weddell Sea obtained during two cruises which were 3 years apart. A TCO2 increase from 1993 to 1996 was observed in the newly formed bottom water, whereas no TCO2 increase was found in the surrounding water masses. Accompanying this TCO2 increase in the bottom water was an oxygen decrease. Obviously, bottom water with variable characteristics is produced along the margins of the Weddell Sea. Examination of possible causes leads to the conclusion that the bottom water variability is largely due to varying amounts of Warm Deep Water intruding onto the shelves of the Weddell Sea, thus changing the shelf water end-member of bottom water formation. Analysis of the data, using the observed differences of oxygen to perform a correction, suggested that some part of the TCO2 increase of the bottom water is due to the increased level of anthropogenic CO2. The TCO2 increase of the bottom water is commensurate to a tentative annual increase of about 1 μmol kg−1 in the surface water source of this bottom water. This would agree fairly well with the increase of the partial pressure of CO2 in the atmosphere.  相似文献   

9.
Concentrations of dissolved Ni, Cu, Zn, Cd and Pb were measured in water samples collected during a cruise with R.V Pelagia (29-6/14-7-1993) in the northern North Sea and N.E. Atlantic Ocean. At least six depths (0–90 m) were sampled with modified Go-Flo samplers from a rubber zodiac. In the study area, the first 25 m were well mixed and stratification occurred below this depth. The local bloom of Emiliania huxleyi hardly affected the trace metals concentration, except for some removal of Cd as seen from its correlation with nitrate. The mean dissolved concentrations were for Ni (3.66 nM), Cu (1.61 nM), Zn (4.5 nM), Cd (48 pM) and Pb (108 pM). These concentrations are among the lowest reported for the North Sea and are of similar magnitude to those found in the eastern North Atlantic at the same latitude. Zn was the only exception with values 10 times higher compared to those in the Atlantic Ocean, suggesting external inputs, mainly atmospheric and possibly from surrounding land masses. The observed ratio Zn:Cd in the North Sea and estuaries is in between the high ratio 600–900 for continental sources and the low ratio 5–10 for oceanic waters. Latter low ratio is consistent with the 21-fold stronger inorganic complexation of Cd in seawater which, in combination with the preferential biological uptake of Zn, may lead to the observed about hundredfold fractionation of Zn versus Cd in the marine system. Other processes may play a role but would need further investigation. The dissolved Pb values tend to be lower than found before in the North Sea, indicating decreasing inventories due to reduced anthropogenic emissions.  相似文献   

10.
Concentrations of trace metals (As, Cd, Cr, Cu, Pb, Hg, Se, and Zn) were determined in the livers, kidneys, muscles, intestines, and hearts of twelve long-beaked common dolphins (Delphinus capensis) from the East Sea, Korea, in 2006. All specimens were entangled in various commercial fishing nets or traps and as such are recorded as by-catch. The concentrations of Cu, Hg, Se, and Zn were much higher in the liver than in the kidney, muscle, intestine, or heart. Trace metals that accumulated in the liver were, in descending order: Zn > Hg > Cd > Se > Cu > As > Cr > Pb. In contrast, the concentration of Cd was higher in the kidney than in any other organs. The trace metals accumulated in the kidney were, in descending order: Cd > Zn > Cu > Hg > Se > As > Pb > Cr. No significant differences were found in the concentrations of As, Cr, or Pb in all the tissues examined.  相似文献   

11.
The adsorption of trace metals (Pb, Zn, Cu, Cd and Hg) on calcite, kaolinite and bentonite has been studied in Krka river water of various salinities (S = 3, 20 and 38‰).Model experiments were performed at pH 8 in natural water and in UV-irradiated water samples to determine the importance of natural soluble organic matter. Cold vapour atomic absorption spectrometry was used for the Hg determination, and a differential pulse anodic stripping voltammetry (DPASV) method for determination of other trace metals, using either a hanging mercury drop electrode or a mercury-coated glassy carbon working electrode. The following results have been obtained on calcite:
1. (1) a powerful absorption of Pb and Zn was observed for both natural and UV-irradiated waters at S=20‰;
2. (2) a strong adsorption of Hg was observed in natural water, and significantly lower adsorption in UV-irradiated water at all three salinities, particularly at low salinity;
3. (3) Cd adsorption was of medium intensity in both waters at S=20‰;
4. (4) Cu was practically not adsorbable in both waters at S=20‰ if the total Cu ion concentration was lower than the copper complexing capacity value;
5. (5) Cu adsorption was of a medium intensity at S=38‰. It has not influenced by the EDTA model ligand.
Trace metals Pb, Zn and Cu are adsorbable on kaolinite and bentonite at S=38‰, whereas Cd is practically not adsorbed. The Krka River is a calcareous river, which supplies the sea with calcite and aluminosilicates. In the light of our model experiments, we suggest that the self-purification of the Krka River is remarkable in respect to Pb, Zn and Hg; this occurs to a lesser extent for Cu, and is negligible in the case of Cd.  相似文献   

12.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

13.
《Marine Chemistry》2002,79(1):27-36
Preformed Cd and PO4 were investigated in the northwestern Pacific (Station CM05) and the Okhotsk Sea (Station CM06), and the relationship between the two elements was examined. At CM05, from the apparent oxygen utilization (AOU)–Cd and PO4 plot, the different molecular ratios of consumed O2 to regenerated Cd and PO4 were calculated to be 254,000 (Cd) and 96 (PO4) for the shallow layer (30–99 m) and 613,000 (Cd) and 170 (PO4) for the deep layer (below the oxygen minimum layer), which suggested the preferential remineralization of Cd and PO4 in the shallow layer. At CM06, regeneration ratios of O2/Cd, PO4 were obtained only in the shallow layer (29–124 m) as 227,000 (Cd) and 75 (PO4). The calculated preformed Cd and PO4 concentrations in the shallow layer were 0.59 nM of Cd and 1.6 μM of PO4 at CM05 and 0.35 nM of Cd and 0.95 μM of PO4 at CM06. These concentrations were much higher than those (close to 0) in the low-latitude area, which was attributable to the supply of these constituents from deep water by the strong winter convection. In the deep layer, at CM05, preformed concentrations were 0.64 nM of Cd and 1.4 μM of PO4. Preformed PO4 generally agreed with previously reported values in the Pacific, which suggested that the concentrations of the initial PO4 in the deep water were preserved as preformed through the movement to the northwestern Pacific. On the other hand, obtained preformed Cd in the northwestern Pacific deep water showed a somewhat higher value than that in the southwest Pacific. The possibility of the terrestrial input and remineralization of Cd by CaCO3 dissolution during the northward movement was considered. A plot of Cd and PO4 showed a linear relationship with slopes of 0.34 and 0.40 (nM/μM) at CM05 and CM06, respectively, which generally agreed with the reported values in the North Pacific.  相似文献   

14.
The concentration level of cadmium (Cd) and the regeneration related to phosphate (PO4) were examined at two stations (CM10, CM12) in the eastern Japan Basin in July 1998. The observed Cd concentrations were around 0.2–0.3 nM and 0.5–0.6 nM in the surface and deep layers (Japan Sea Proper Water; JSPW), respectively; the concentration of Cd in the JSPW was much lower than that in the Pacific deep water, which is attributed to its specific formation system (which driven by the winter convection of the surface layer within the Japan Sea, thereafter descending to the deep layer) connected with the relatively active vertical mixing in the Japan Sea. A plot of Cd against PO4 showed good linearity with positive y-intercept values, suggesting that the excess Cd was apparently not available in the biogeochemical cycle. The molecular ratios of consumed O2 to regenerated Cd and PO4 in the JSPW were 688,000, 140 and 881,000, 146 for CM10 and CM12, respectively, and a lower preformed Cd concentration (around 0.37 nM) was also estimated in the JSPW, different from that of the North Pacific deep water (613,000 for Cd, 170 for PO4, and 0.64 nM of preformed Cd).  相似文献   

15.
通过对胶州湾东北部滨海湿地5个采样点生长的碱蓬中10种重金属Cu、Zn、Pb、Cd、As、Cr、Co、Ni、V、Mo的系统研究,发现碱蓬对Cu,Zn的吸收明显高于其它重金属,这可能与Cu和Zn是植物生长发育必需的微量元素有关,碱蓬体内Cr、Pb、V和Ni的含量也相对较高。碱蓬对Mo的富集效果最为显著,对Cu、Zn、Cd...  相似文献   

16.
Denitrification influences the nitrogen budget in estuaries by removing fixed nitrogen from the inorganic pool; rates are dependent on both geological and geographic conditions as well as increasing anthropogenic impacts. In this study the effects of copper (Cu), chromium (Cr), zinc (Zn), cadmium (Cd) and lead (Pb), on the denitrification pathway were evaluated in subtidal and intertidal sediments of the Douro River estuary. Dinitrogen, N2O and NO2 production rates were measured in triplicate slurries of field samples under different treatments of metal concentrations. Results demonstrated that similar metal amendments led to different site responses for denitrification, suggesting that variations in sediment properties (metal concentrations, grain size, organic matter content, etc.) and/or differences in denitrifying community tolerance modulate the level of metal toxicity. Denitrifying communities in subtidal muddy sediments were not affected by increasing concentrations of metals. In contrast, intertidal sandy sites revealed high sensitivity to almost all trace metals tested; almost complete inhibition by Cr (95%) and Cu (85%) was observed for 98 and 79 μg per gram of wet sediment respectively, and by Zn (92%) at the highest concentration added (490 μg per gram of wet sediment). Moreover, the addition of trace metals stimulated N2O and NO2 accumulation in intertidal sandy (Zn, Cu, Cr and Cd) and muddy sediments (Cu and Zn), demonstrating a pronounced inhibitory effect on specific steps within the denitrification enzymatic system. In summary, the results obtained suggest that, according to the type of estuarine sediment, trace metals cannot only reduce total N removal from an estuary via denitrification but also can enhance the release of N2O, a powerful greenhouse gas.  相似文献   

17.
Based on the survey of surface sediment in Xiamen Bay in October 2011, the speciation, distribution, and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd, and Cr) in this area were studied us-ing the sequential extraction method and ecological risk assessment method. The results indicated:(1) the total concentrations of these heavy metals were influenced by runoff, industrial wastewater, and sewage, and were all higher in the coastal area than the offshore area while the highest area of Pb was a little far-ther away from the coastal water due to atmosphere deposition;(2) sequential extractions suggested that Cu was mainly composed with residual and Fe/Mn-oxide bound fractions, Pb was bound to Fe/Mn-oxide, Zn and Cr were dominated by residual, and Cd bound to exchangeable and carbonate fractions; (3) the order of migration and transformation sequence was Cd>Pb>Cu>Zn>Cr and the degree of pollution was Cd>Pb>Cu>Zn>Cr;and (4) the ratios of the secondary and primary phases showed that Zn and Cr were both clean, Cu may be polluted, Pb was moderately polluted, while Cd was heavily polluted.  相似文献   

18.
The spatial and temporal distribution of cadmium (Cd) and phosphate in the Southern Ocean are related to biology and hydrography. During a period of 18 days between transects 5/6 and 11, a phytoplankton spring bloom developed in the Polar Frontal region. Upper water Cd concentrations were not depleted and ranged from 0.2 to 0.8 nM at about 10 m depth. These relatively high Cd concentrations are attributed to upwelling of Upper Circumpolar Deep Water (0.5–1.2 nM in the core) in combination with low biological productivity (0.2 to 0.3 mg m−3 chlorophyll-a, 0.3 g C m−2 d−1). Total particulate Cd concentrations at 40 m depth were between 0.02 and 0.14 nM with the maximum in concentration in the Polar Frontal region. Most of the particulate Cd at this depth (85–94%) was detected in the first phase of a sequential chemical leaching treatment which includes adsorbed Cd as well as Cd incorporated in algae. The Polar Frontal region was characterized by minima in Cd concentration and Cd/phosphate ratio of seawater at both transects; values were the lowest at transect 11 after development of the spring bloom which was dominated by diatoms. This decreasing Cd/phosphate ratio in seawater during spring bloom development was attributed to preferential Cd gross uptake which more than compensated the process of preferential Cd recycling. Within the Upper Circumpolar Deep Water, Cd showed a maximum in concentration similar to that of the major nutrients. Both the Cd concentration and the Cd/phosphate ratio of the deeper water increased in southern direction, from 0.4 to 0.7 nM and from 0.2 to 0.3 nM/μM, respectively. Antarctic Intermediate Water has a Cd concentration of 0.21 nM with a Cd/phosphate ratio of 0.10 nM/μM. In Antarctic Bottom Water, Cd concentrations ranged from 0.60 to 0.82 nM.  相似文献   

19.
Concentrations of Cd, Cu, Cr, Co, Ni, Zn, Fe, Mn, Pb, As, and Sb were determined in sediment trap and bottom sediment samples collected seasonally from a station on the eastern Turkish coast of the Black Sea. Cd, Pb and Mn concentrations were highest in the sediment trap samples except during the summer period, whereas Co, Ni, Zn and Fe levels were much lower than corresponding levels found in the surface sediments. Cu, Cr, As and Sb levels showed no definite trend with sediment type. In general, with the exception of Cr, relatively lower metal concentrations in the sediment trap material were determined in the summer period. The highest mass flux, 56.5 g m−2 day−1, was measured during autumn. The highest flux of heavy metals also occurred during autumn and was strongly dependent on particle mass flux. Based on these results, we suggest that the downward vertical transport of particulate heavy metals in this region is related to the high degree of land erosion and the resultant particulate flux dynamics, which occur here. It was noteworthy that the highest concentrations of Cd, Cu, Co, Zn, Fe and Sb in particles were measured during winter a finding which suggests that enhanced fossil fuel combustion, which occurs during this period in adjacent urban and industrial areas plays an important role in the metal composition of sinking particles in nearshore waters.  相似文献   

20.
九龙江口表层沉积物重金属的污染特征与来源分析   总被引:1,自引:0,他引:1  
为了解九龙江口表层沉积物重金属的污染特征,作者于2013年9月在九龙江口进行了表层沉积物采样调查分析,结果表明:沉积物中Cu、Pb、Zn和Cd的空间分布较为相似,高值区均分布在南溪入海口和海门岛下游海域,Cr含量的高值区也分布在南溪入海口附近。聚类分析将采样点位分为4类:第一类主要分布在河口区外侧,沉积物中油类含量较高;第二类主要分布在南溪出海口,硫化物、Zn和Cr的含量较高;第三类分布在河口区中北部,污染物含量处于中等水平;第四类主要分布在海门岛下游海域,硫化物、TOC、Cu、Pb和Zn含量较高。地质累积系数评价显示:Hg、Cu、Pb、Zn、Cr、As处于未污染到轻度污染水平,Cd为轻度污染到重度污染水平;Zn、Cr、Cd的Igeo指数相对较高,第二类和第四类站位的Igeo指数相对较高。相关分析表明,硫化物与Cu、Zn、Cd正相关性较高,Cu与Zn、Cd、Cr正相关性较高,Pb与Zn、Cd正相关性较高,Zn与Cd、Cr正相关性较高。主成分分析表明,河口沉积物重金属主要有以下几个可能来源:流域和河口的工农业活动和采矿活动、流域水土流失、流域自然风化。针对河口沉积物重金属污染,流域-河口污染控制与生态修复需采取以下措施:工业污染的控制、农业污染控制、养殖污染的控制、植树造林与河岸带绿化和矿山生态恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号