首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   

2.
Fluid inclusion microthermometry and structural data are presented for quartz vein systems of a major dextral transcurrent shear zone of Neoproterozoic–Cambrian age in the Ribeira River Valley area, southeastern Brazil. Geometric and microstructural constraints indicate that foliation–parallel and extensional veins were formed during dextral strike–slip faulting. Both vein systems are formed essentially by quartz and lesser contents of sulfides and carbonates, and were crystallized in the presence of CO2–CH4 and H2O–CO2–CH4–NaCl immiscible fluids following unmixing from a homogeneous parental fluid. Contrasting fluid entrapment conditions indicate that the two vein systems were formed in different structural levels. Foliation–parallel veins were precipitated beneath the seismogenic zone under pressure fluctuating from moderately sublithostatic to moderately subhydrostatic values (319–397 °C and 47–215 MPa), which is compatible with predicted fluid pressure cycle curves derived from fault–valve action. Growth of extensional veins occurred in shallower structural levels, under pressure fluctuating from near hydrostatic to moderately subhydrostatic values (207–218 °C and 18–74 MPa), which indicate that precipitation occurred within the near surface hydrostatically pressured seismogenic zone. Fluid immiscibility and precipitation of quartz in foliation–parallel veins resulted from fluid pressure drop immediately after earthquake rupture. Fluid immiscibility following a local pressure drop during extensional veining occurred in pre-seismic stages in response to the development of fracture porosity in the dilatant zone. Late stages of fluid circulation within the fault zone are represented dominantly by low to high salinity (0.2 to 44 wt.% equivalent NaCl) H2O–NaCl–CaCl2 fluid inclusions trapped in healed fractures mainly in foliation–parallel veins, which also exhibit subordinate H2O–NaCl–CaCl2, CO2–(CH4) and H2O–CO2–(CH4)–NaCl fluid inclusions trapped under subsolvus conditions in single healed microcracks. Recurrent circulation of aqueous–carbonic fluids and aqueous fluids of highly contrasting salinities during veining and post-veining stages suggests that fluids of different reservoirs were pumped to the ruptured fault zone during faulting episodes. A fluid evolution trending toward CH4 depletion for CO2–CH4–bearing fluids and salinity depletion and dilution (approximation of the system H2O–NaCl) for aqueous–saline fluids occurred concomitantly with decrease in temperature and pressure related to fluid entrapment in progressively shallower structural levels reflecting the shear zone exhumation history.  相似文献   

3.
Investigations of fluid inclusions in granulitefacies metapelites of southern Calabria enable characterization of the fluid composition of these lower crustal rocks, and constrain the petrologically deduced retrograde P-T path characterized by isothermal uplift prior to isobaric cooling in middle crustal levels. Fluid inclusions in cordierite, garnet and sillimanite have a CO2-rich composition. Inclusions in cordierite rarely contain minor amounts of N2 and H2O, and in garnets some CO2–CH4–N2 inclusions have been analyzed by Raman microprobe. Quartz reveals the most complex fluid melusion compositions (1) CO2-rich, (2) CO2–CH4–N2, (3) CH4–N2, (4) H2O–MgCl2–CaCl2–NaCl, (5) H2O–NaCl and (6) H2O–CO2. The earliest fluid inclusions after peak metamorphism are rich in CO2 with minor amounts of N2 and H2O. An early CO2–(H2O–N2) fluid composition has been confirmed by detection of CO2, H2O and N2 in the channels of the cordierite structure. Most of the early CO2-rich fluid inclusions were modified during the uplift from the lower to the middle crustal level, resulting in a density decrease with CO2 still dominant. The subsequent isobaric cooling led to further modifications of the fluid inclusions. High-density inclusions around implosion textures or scattered amongst lower-density ones must have formed during this cooling episode. Aqueous inclusions in quartz are mostly formed late and are consistent with trapping during retrograde rehydration.This project has been supported by the DFG as contribution to the special program Continental Lower Crust  相似文献   

4.
The Daenam mine, which produced over 9250 tons of iron oxide ore from 1958 to 1962, is situated in the Early Cretaceous Yeongyang subbasin of the Gyeongsang basin. It consists of two lens-shaped, hematite-bearing quartz veins that occur along faults in Cretaceous leucocratic granite. The hematite-bearing quartz veins are mainly composed of massive and euhedral quartz and hematite with minor amounts of pyrite, pyrrhotite, mica, feldspar and chlorite.Fluid inclusions in quartz can be divided into three main types: CO2-rich, CO2–H2O, and H2O-rich. Hydrothermal fluids related to the formation of hematite are composed of either H2O–CO2–NaCl ± CH4 (homogenization temperature: 262–455 °C, salinity <7 eq. wt.% NaCl) or H2O–NaCl (homogenization temperature: 182–266 °C, and salinity <5.1 eq. wt.% NaCl), both of which evolved by mixing with deeply circulating meteoric water. Hematite from the quartz veins in the Daenam mine was mainly deposited by unmixing of H2O–CO2–NaCl ± CH4 fluids with loss of the CO2 + CH4 vapor phase and mixing with downward percolating meteoric water providing oxidizing conditions.  相似文献   

5.
Phase equilibria in the ternary systems H2O–CO2–NaCl and H2O–CO2–CaCl2 have been determined from the study of synthetic fluid inclusions in quartz at 500 and 800 °C, 0.5 and 0.9 GPa. The crystallographic control on rates of quartz overgrowth on synthetic quartz crystals was exploited to prevent trapping of fluid inclusions prior to attainment of run conditions. Two types of fluid inclusion were found with different density or CO2 homogenisation temperature (Th(CO2)): a CO2-rich phase with low Th(CO2), and a brine with relatively high Th(CO2). The density of CO2 was calibrated using inclusions in the binary system H2O–CO2. Mass balance calculations constrain tie lines and the miscibility gap between brines and CO2-rich fluids in the H2O–CO2–NaCl and H2O–CO2–CaCl2 systems at 500 and 800 °C, and 0.5 and 0.9 GPa. The miscibility gap in the CaCl2 system is larger than in the NaCl system, and solubilities of CO2 are smaller. CaCl2 demonstrates a larger salting-out effect than NaCl at the same P–T conditions. In ternary systems, homogeneous fluids are H2O-rich and of extremely low salinity, but at medium to high concentrations of salts and non-polar gases fluids are unlikely to be homogeneous. The two-phase state of crustal fluids should be common. For low fluid-rock ratios the cation compositions of crustal fluids are buffered by major crustal minerals: feldspars and micas in pelites and granitic rocks, calcite (dolomite) in carbonates, and pyroxenes and amphiboles in metabasites. Fluids in pelitic and granitic rocks are Na-K rich, while for carbonate and metabasic rocks fluids are Ca-Mg-Fe rich. On lithological boundaries between silicate and carbonate rocks, or between pelites and metabasites, diffusive cation exchange of the salt components of the fluid will cause the surfaces of immiscibility to intersect, leading to unmixing in the fluid phase. Dispersion of acoustic energy at critical conditions of the fluid may amplify seismic reflections that result from different fluid densities on lithological boundaries.Editorial responsibility: I. Parsons  相似文献   

6.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

7.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

8.
Trace element and isotopic compositions of carbonate from ore bodies, country rock which hosts the ore bodies (H8 dolomite), a carbonatite dyke exposed in Dulahala near Bayan Obo, and rare earth element (REE)-rich dolomite in Bayan Obo have been determined to understand the genesis of the Bayan Obo Fe-Nb-REE ore deposit, the world’s largest resource of REE. The REE and trace element distribution patterns of samples from the REE-rich carbonatite dykes are identical to those of mineralized carbonate rocks, indicating a genetic linkage between the REE-rich carbonatite and mineralization in this region. By contrast, carbon and oxygen isotopes in the mineralized carbonate varied significantly, δ13C = −7.98‰ to −1.12‰, δ18O = 8.60-25.69‰, which are distinctively different from those in mantle-derived carbonatite. Abnormal isotopic fractionations between dolomite and calcite suggest that these two minerals are in disequilibrium in the carbonatite dyke, ore bodies, and H8 marble from Bayan Obo. This isotopic characteristic is also found in mineralized sedimentary marine micrite from Heinaobao, ∼25 km southeast of the Bayan Obo Fe-Nb-REE ore deposit. These facts imply that the carbonate minerals in the Bayan Obo deposit have resulted from sedimentary carbonate rocks being metasomatised by mantle-derived fluids, likely derived from a REE-enriched carbonatitic magma. The initial Nd isotope values of ore bodies and carbonatite dykes are identical, indicating that ore bodies, carbonatite dykes and veins may have a similar REE source.  相似文献   

9.
The Bayan Obo REE‐Nb‐Fe deposit in Inner Mongolia, China, consists of later REE‐mineralizing fluorocarbonate veins cutting the earlier banded and massive ores in the deposit. Samarium–neodymium dating using the minerals including huanghoite and rubidium–strontium dating using single‐grain biotites both from the later veins show concordant isochrons corresponding to 442 ± 42 Ma (2σ uncertainty) and 459 ± 41 Ma, respectively. The isochron ages suggest that the later REE vein mineralization took place during the middle Paleozoic at Bayan Obo, consistent with geological observations and age data previously reported.  相似文献   

10.
The Miaoniuping REE deposit, Sichuan Province, China is the second largest primary LREE deposit which is a little smaller than the world's largest Bayan Obo REE deposit, Inner Mongolia, China. The REE mineralization is spatially and temporally associated with carbonatites and syenites. This deposit is characterized by its tectonic setting of deep faults, the accompanying mantle-derived magmatic activity, the multiple of wall-rock alteration, the moderately high temperature of formation, H2O and CO2 being the important components of the ore-forming fluids, and the mantle source for the ore-forming materials and fluids. These features evidenced that this deposit is the product of the mineralization by mantle fluids.  相似文献   

11.
Carbonatite dykes at bayan Obo,inner Mongolia,China   总被引:17,自引:0,他引:17  
Summary Calcite-rich dykes occur in the thrust fold belt near the Bayan Obo rare earth element (REE) deposit. They cut a thrust inlier of granitic migmatite within folded Bayan Obo Group sediments of Proterozoic age. Cathodoluminescence, X-ray fluorescence and microprobe studies show that the rock is a calcite carbonatite with Sr-Mn-bearing calcite, magnesio-riebeckite, apatite, pyrochlore, K-feldspar and biotite. One dyke was chosen for detailed analysis. Its margin is strongly REE-mineralized with much monazite developed adjacent to zoned apatite. Secondary alteration is marked by the introduction of Fe and Mn. The adjacent migmatite is fenitized to a magnesio-riebeckite-albite rock. The sedimentary dolomite of the Bayan Obo Group is composed mainly of Mn-Sr-RE-hearing ferroan dolomite and contains bands of opaque grains, apatite, monazite, fluorite and taeniolite. Many trace element and isotope similarities between the carbonatite dyke and the sedimentary dolomite are revealed, and the evidence supports the possibility that the dolomite is a dolomitized carbonatite tuff. The Bayan Obo REE mineralization also shows geochemical similarities with the mineralization seen in the carbonatites, and a possible genetic connection is presented.
Die Karbonatit-Gänge von Bayan Obo, Innere Mongolei, China
Zusammenfassung Kalzit-reiche Gänge kommen im Faltengürtel in der Nähe der Seltenen-Erd-Lagerstätte Bayan Obo vor. Es handelt sich um hellbräunliche, 1–2 m mächtige Gänge, die migmatitische Orthogneise von granitischer Zusammensetzung innerhalb der gefalteten Sedimente der Bayan Obo Gruppe durchsetzen. Chemische Daten, die auf Kathoden-Lumineszenz, Röntgen-Fluoreszenz und Mikrosondenuntersuchungen beruhen, zeigen, daß es sich hier um einen Kalzit-KazhooudimdSr-Mo-führeodem Kalzit, Magnesio-Riebeckit Apatit, Pyrochlor Alkalifelds und Biotit handelt. Einer dieser Gänge wurde für eine eingehende Untersuchung ausgewählt. Seine randlichen Partien sind stark mit SEE mineralisiert, und viel Monazit kommt in der Nähe von zonar gebautem Apatit vor. Sekundäre Umwandlung wird durch die Zufuhr von Fe und Mn markiert. Der benachbarte Migmatit ist fenitisiert und dadurch in ein Magnesio-Riebeckit-Gestein umgewandelt. Der sedimentäre Dolomit der Bayan-Obo-Gruppe besteht hauptsächlich aus Mn-Sr-SE-führenden eisenhaltigen Dolomit und enthält Lagen von opaken Mineralen, Apatit, Monazit, Fluorit und Taeniolit. Karbonatitgänge und der sedimentäre Dolomit zeigen Ähnlichkeiten, was den Spurenelementgehalt und die isotopische Zusammensetzung betrifft. Diese Daten weisen auf die Möglichkeit hin, daß der Dolomit ein dolomitisiert Karbonatit-Tuff ist. Die SEE-Vererzung von Bayan Obo zeigt auch geochemische Ähnlichkeiten mit der Vererzung der Karbonatite, und ein möglicher genetischer Zusammenhang wird diskutiert.


With 16 Figures  相似文献   

12.
通过对组成赋矿白云岩的白云石矿物系统的显微结构和化学成分的研究表明,赋矿白云岩是碳酸岩质次火山岩,因此白云鄂博矿床是与火成碳酸岩有关的矿床。赋矿白云岩属于镁质碳酸岩(MgOFeO+MnO)和铁质碳酸岩(MgOFeO+MnO)系列,FeO、MnO和SrO含量高,这与FeO、MnO和SrO含量很低的沉积碳酸岩完全不同。赋矿白云岩的这一特点还表明它来自经历过分异结晶后的白云质碳酸岩浆而不是初始白云质碳酸岩浆。赋矿白云岩复杂的矿物组合表明,其母岩浆是富含F、Cl、P和S这些挥发分以及REE,Na、K和Fe这些元素的。在碳酸岩浆上升和侵位的过程中由于温度压力的降低,碳酸岩浆释放的含上述组分的流体会向上部地壳集中并对其接触的围岩进行交代,这就形成了矿体内呈不对称带状分布的霓长岩化矿石带。在大量的萤石和稀土氟碳酸盐矿物形成以后(其对应于萤石-稀土条带状矿石),流体的成分仍相对富钠和CO_2,钠可以和围岩中的硅结合形成钠辉石,流体较高的比值,有利于稀土的富集,此时形成的钠辉石型矿石的稀土含量是相当高的,仅次于条带状矿石。随着流体继续迁移和交代,流体中CO_2浓度下降而H_2O含量增加,温度也有所下降,但是流体中的钠依然活跃,所以出现了含有结构水的钠闪石,形成了钠闪石型矿石。流体中H_2O的增加,比值的下降,不利于稀土的大量富集,因此,钠闪石型矿石的稀土含量明显低于钠辉石型矿石。这说明,从碳酸岩浆中外逸的流体,在迁移交代围岩的过程中其成分、温度和氧逸度都是有变化的。从初期富CO_2,温度和氧逸度较高,到后期富H_2O,温度和氧逸度都有所降低。不同矿石类型的形成与这种变化有直接的关系。不同矿石类型中的磁铁矿的生成方式虽然不同于白云岩中的磁铁矿,但前者的氧同位素继承了后者的特点,表明了它们的亲缘关系和成因上的联系。稀土分布型式表明,不同矿石类型的稀土分布型式与赋矿白云岩的大体一致,有明显的LREE富集和明显的HREE亏损,且总稀土含量越高,轻重稀土分离程度越高。但是,不同矿石类型在轻稀土含量上有一定程度的差别,表明在霓长岩化过程中轻稀土活动性更强。总之,氟、钠和铁的交代作用在主东矿最强,稀土、铌和铁资源也最为富集,这里的白云岩厚度也最大,表明白云鄂博矿的霓长岩化成矿作用与赋矿白云岩衍生的流体的大量聚集以及流体对围岩广泛强烈的交代作用直接相关。  相似文献   

13.
On the basis of the mechanism of formation of mineral inclusions, it may be assumed that a certain relation exists between the compositions of fluid inclusions in various minerals formed at the same stage of hydrothermal activity. In order to study the genetic relationships between different minerals in the Bayan Obo iron deposit, the compositions(K~+, Na~+, Ca~+, Mg~+, F~+, Cl~+, CO_2~(2-), ΣSO_4~(2-) and pH) of inclusions in fluorite(23), hematite(13), magnetite(3), sodium pyroxene(2) and dolomite(5) from the main mine and the eastern mine were determined by using the vacuum decrepitation and leaching methods, and cluster analyses of the data on the compostions were made. The Q-mode cluster analysis indicates that some iron oxide minerals in the deposit are related to dolomite of sedimentary origin, while others are related to fluorite and sodium pyroxene--products of hydrothermal activity. The R-mode cluster analysis shows that the components of the leaching solution may be divided into two groups: one includes CO_2~(2-), Mg~(2+) and H~+(pH), which are obviously associated with dolomite; the other comprises Na~+, K~+, Ca~+, F~+, Cl~+ and SO_4~(2-), which may possibly represent the composition of hydrothermal solutions.The reaction of the Na-F-Cl solution(pH 4.72) with hematite dolomite at 300℃ and 5 × 10~7 Pa and under alternately"static and dynamic" conditions produced large amounts of hematite and fluorite and small amounts of smectite and Na(Fe) silicates, and the hematite-fluorite assemblage accords with the actual geological conditions in the deposit. From a comparison between the compositions of"static" and"dynamic" solution samples, it may be known that the flow reaction facilitates the migration of Fe, F, Ca and other components as well as Na-metasomatism(Na and Si are fixed in a solid phase).The study of the compositions of mineral inclusions and simulation experiments on hydrothermal metasomatism have provided new evidence for the hypothesis of metamorphosed-sedimentary and hydrothermal-remoulding origin of the Bayan Obo deposit, and pointed out emphatically that hydrothermal metasomatism plays an important role in the formation of the mineral deposit, particularly in the main and the east mine.  相似文献   

14.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

15.
The West Mine of the Bayan Obo deposit, located in the northern‐central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb‐REE‐Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb‐REE‐Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe‐REE‐Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi‐factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.  相似文献   

16.
Naturally re-equilibrated fluid inclusions have been found in quartz crystals from alpine fissures of the Western Carpathians. Re-equilibration textures, such as planar arrangement of the decrepitation clusters as well as the quartz c- and a-axis oriented fracturing indicate explosion of fluid inclusions. The extent of fracturing, which is dependent on inclusion diameters, suggests inclusion fluid overpressures between 0.6–1.9 kb. Microthermometry data are controversial with the textures because of indicating roughly fixed initial fluid composition and density during re-equilibration, although inclusion volumes have been sometimes substantially reduced by crystallization of newly-formed quartz. It is concluded that fluid loss from re-equilibrated inclusions must have been compensated for by replacing equivalent quartz volume from cracks into parent inclusion. Such a mechanism has operated in a closed system and the re-equilibration related cracks have not been connected with mineral surface. The compositional and density differences between aqueous inclusions in decrepitation clusters and CO2-rich parent inclusions cannot be interpreted in terms of classical fluid immiscibility. Moreover, monophase liquid-filled aqueous inclusions and coexisting monophase CO2 vapour-filled inclusions in the decrepitation clusters are thermodynamically unacceptable under equilibrium metamorphic conditions. The effect of disjoining pressure resulting from structural and electrostatic forces in very thin fractures is suspected to have caused density and compositional inconsistencies between parent and cluster inclusions, as well as the unusual appearance of cluster inclusions. In high-grade metamorphic conditions, the re-equilibration probably leads to boundary layer-induced immiscibility of homogeneous H2O–CO2–NaCl fluids and to formation of compositionally contrasting CO2-rich and aqueous inclusions.  相似文献   

17.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

18.
Summary The world-class Paleoproterozoic Vergenoeg fluorite deposit in South Africa is hosted in a breccia pipe comprising units with varying proportions of pegmatoidal fayalite, magnetite, fluorite and siderite. The adjacent A-type Bushveld granites also have associated fluorite deposits containing fluorite with similar REE patterns, fluid inclusion and Sr isotope compositions to those at Vergenoeg, leading to the proposal that there is a genetic relationship. This is despite the silica-undersaturated nature (SiO2<30%) of the Pipe and its extreme enrichment in Ca, F, Fe, Nb, P and REE compared to granites. Both liquid immiscibility from a granitic melt and granitic magmato-hydrothermal activity have been proposed as genetic mechanisms to explain this exotic composition. However, the Vergenoeg Pipe shows greater similarities to alkaline rocks, in particular the Phalaborwa carbonatite of similar age, including: i) size and shape, ii) associated maars, iii) mineralogical zoning, iv) geochemical, radiogenic and stable isotope composition, and v) presence of both high-T and low-T fluid inclusions. This suggests an alternative genetic relationship with alkaline magmas, in which some geochemical and radiogenic isotopic similarities to Bushveld granites are the consequence of broadly contemporaneous development in the same tectonic setting within the same lithosphere, whereas others may be due to hydrothermal overprinting. Similarities with Phalaborwa and also with Bayan Obo, Mongolia, indicate that the Vergenoeg pegmatoid pipe could be an extreme carbonatite-associated member of the Fe-oxide Cu–Au (±REE±P) group of deposits.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-003-0012-6Tables 1-4 available as electronic supplementary material  相似文献   

19.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

20.
近年来关于白云鄂博Nb-REE-Fe矿床H8岩体火成水成归属的争论已渐息,而矿床成矿过程以及REE富集机制仍是学术界关注的热点。文章对白云鄂博矿床白云石碳酸岩体、霓长岩化蚀变带、尖山组板岩3个典型剖面开展系统的岩石地球化学工作,发现赋矿碳酸岩、霓长岩、铁矿石微量与稀土元素配分模式具有相似性,靠近H8岩体的尖山组板岩往往有着更高的稀土元素含量,以及与成矿碳酸岩相近的微量元素配分模式。区内各类岩石单元稀土元素分馏明显,全岩LaN/NdN比值的变化规律显示,H8岩体内部比边缘更富La,边缘比岩体内部更富Nd。通过岩(矿)石薄片BSE图像结合矿物电子探针分析显示,H8岩体内的稀土元素矿物(主要是独居石、氟碳铈矿等)可分为2组,一组相对富La,呈半自形-他形,星点状分布;另一组相对富Nd,呈他形细粒,脉状分布。两组矿物中不同元素的富集特征可能代表了结晶过程中流体环境的改变。上述实验结合地质勘查结果表明,白云鄂博矿床初始成矿物质的起源与H8碳酸岩一致,均来源于中元古代碳酸岩岩浆活动,而不同类型的稀土元素矿物对应了白云岩成岩阶段与萤石矿化阶段两个不同的稀土矿化阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号