首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

2.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   

3.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

4.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Foraminiferal assemblages and the sedimentology of two cores (POR20 and POR21) from eastern Disko Bugt, west Greenland, are used to identify environmental changes in the area over the past c. 2200 years. Changes in the sediment flux supplied to the core sites from Jakobshavn Isbrae are used to assess the relative position of the calving margin. An Atlantic water influence as strong as, or slightly stronger than, present prevailed at c. 2200 cal. yr BP. A trend of increasing Atlantic water influence then culminated in peak warm and saline hydrographic conditions c. 1664-474 cal. yr BP encompassing the 'Medieval Warm Period'. This period was marked by a retreat of the calving front of Jakobshavn Isbrae and was followed by a marked cooling in hydrographic conditions relating to an increase in the influence of the East Greenland Current in the West Greenland Current corresponding to the climatic episode the 'Little Ice Age'. A rise in sedimentation rate over this period relates to the well-documented advance of Jakobshavn Isbrae. The record from Disko Bugt shows good agreement with the temperature record from the Greenland ice cores and other climatic and oceanographic reconstructions in the region.  相似文献   

8.
Lithostratigraphy and chronostratigraphy of samples from 18 deep boreholes in Vendsyssel have resulted in new insight into the Late Weichselian glaciation history of northern Denmark. Prior to the Late Weichselian Main advance c. 23–21 kyr BP, Vendsyssel was part of an ice‐dammed lake where the Ribjerg Formation was deposited c. 27–23 kyr BP. The timing of the Late Weichselian deglaciation is well constrained by the Main advance and the Lateglacial marine inundation c. 18 kyr BP, and thus spans only a few millennia. Rapid deposition of more than 200 m of sediments took place mainly in a highly dynamic proglacial and ice‐marginal environment during the overall ice recession. Mean retreat rates have been estimated as 45–50 m/yr in Vendsyssel with significantly higher retreat rates between periods of standstill and re‐advance. The deglaciation commenced in Vendsyssel c. 20 kyr BP, and the Troldbjerg Formation was deposited c. 20–19 kyr BP in a large ice‐dammed lake in front of the receding ice sheet, partly as glaciolacustrine sediments and partly as rapid and focused sedimentation in prominent ice‐contact fans, which make up the Jyske Ås and Hammer Bakker moraines. In the northern part of central Vendsyssel, at least four generations of north–south orientated tunnel valleys are identified, each generation related to a recessional ice margin. This initial deglaciation was interrupted by a major re‐advance from the east c. 19 kyr BP, which covered most of Vendsyssel. An ice‐dammed lake formed in front of the ice sheet as it retreated towards the east; the Morild Formation was deposited here c. 19–18 kyr BP. Related to this stage of deglaciation, eight ice‐marginal positions have been identified based on the distribution of large tunnel‐valley systems and pronounced recessional moraines. The Morild Formation consists of glaciolacustrine sediments, including the sediment infill of more than 190 m deep tunnel valleys, as well as the sediments in recessional moraines, which were formed as ice‐contact sedimentary ridges, possibly in combination with glaciotectonic deformation. The character of the tunnel‐valley infill sediments was determined by proximity to the ice margin. During episodes of rapid retreat of the ice margin, tunnel valleys were quickly abandoned and filled with fine‐grained sediments in a distal setting. During slow retreat of the ice margin, tunnel valleys were filled in an ice‐proximal environment, and the infill consists of alternating layers of fine‐ to coarse‐grained sediments. At c. 18 kyr BP, Vendsyssel was inundated by the sea, when the Norwegian Channel Ice Stream broke up, and a succession of marine sediments (Vendsyssel Formation) was deposited during a forced regression.  相似文献   

9.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

10.
Palaeoglaciological reconstructions of the North Sea sector of the last British Ice Sheet have, as other shelf areas, suffered from a lack of dates directly related to ice‐front positions. In the present study new high‐resolution TOPAS seismic data, bathymetric records and sediment core data from the Witch Ground Basin, central North Sea, were compiled. This compilation made it possible to map out three ice‐marginal positions, partly through identification of terminal moraines and partly through location of glacial‐fed debrisflows. The interfingering of the distal parts of the glacial‐fed debrisflows with continuous marine sedimentation enabled the development of a chronology for glacial events based on previously published and some new radiocarbon dates on marine molluscs and foraminifera. From these data it is suggested that after the central Witch Ground Basin was deglaciated at c. 27 cal. ka BP, the eastern part was inundated by glacial ice from the east in the Tampen advance at c. 21 cal. ka BP. Subsequently, the basin was inundated by ice from northeast during the Fladen 1 (c. 17.5 cal. ka BP) and the Fladen 2 (16.2 cal. ka BP) events. It should be emphasized that the Fladen 1 and 2 events, individually, may represent dynamics of relatively small lobes of glacial ice at the margin of the British Ice Sheet and that the climatic significance of these may be questioned. However, the Fladen Events probably correlate in time with the Clogher Head and Killard Point re‐advances previously documented from Ireland and the Bremanger event from off western Norway, suggesting that the British and Fennoscandian ice sheets both had major advances in their northwestern parts, close to the northwestern European seaboard, at this time.  相似文献   

11.
Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenland ice sheets during the last glaciation. This paper focuses on the events and processes leading to the opening of the strait and the environmental response to establishment of the Arctic‐Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon‐dated cores 2001LSSL‐0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with ΔR = 220±20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice‐proximal (red/grey laminated, ice‐proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice‐rafted debris) to ice‐distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. We hypothesize that a distinct IRD layer deposited between 9.3 and 9 (9.4–8.9 1σ) cal. ka BP marks the break‐up of ice in Kennedy Channel resulting in the opening of Nares Strait as an Arctic‐Atlantic throughflow. Overlying foraminiferal assemblages indicate enhanced marine productivity consistent with entry of nutrient‐rich Arctic Surface Water. A pronounced rise in agglutinated foraminifers and sand‐sized diatoms, and loss of detrital calcite characterize the uppermost bioturbated mud, which was deposited after 4.8 (3.67–5.55 1σ) cal. ka BP. The timing of the transition is poorly resolved as it coincides with the slow sedimentation rates that ensued after the ice margins retreated onto land.  相似文献   

12.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

13.
The sedimentary records of Nulhegan Pond and Beecher Pond in the Nulhegan Basin of north‐eastern Vermont were analyzed to yield a history of environmental change since the latest Pleistocene. Shoreline landforms indicate that part of the Nulhegan Basin was inundated by Glacial Lake Nulhegan (GLN), which was impounded behind a dam of glacial sediment. Outwash derived from stagnant ice forms the bottom 176 cm of the Nulhegan Pond core. Fine‐grained inorganic sediment deposited between 13.4 and 12.2k cal a BP is interpreted as a deep‐water facies representing GLN, while coarser sediment from 12.2 to 11.8k cal a BP records draining of the glacial lake. Rapid, simultaneous increases in organic matter and biogenic silica signal the onset of productivity following the Younger Dryas. Beecher Pond formed c. 11.3k cal a BP through surface collapse over a buried ice block; buried stagnant ice may have persisted in the vicinity of the pond into the early Holocene. From 8.9 to 5.5k cal a BP, sediment in both lakes became coarser and richer in aquatic organic matter, suggesting a low‐water phase in which previously deposited lacustrine sediments were reworked and the littoral zone shifted basinward. Low water levels at this time are consistent with other records from Maine and southern Quebec, but contrary to records from ~325 km to the south. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Physical properties, grain size, bulk mineralogy, elemental geochemistry and magnetic parameters of three sediment piston cores recovered in the Laurentian Channel from its head to its mouth were investigated to reconstruct changes in detrital sediment provenance and transport related to climate variability since the last deglaciation. The comparison of the detrital proxies indicates the succession of two sedimentary regimes in the Estuary and Gulf of St. Lawrence (EGSL) during the Holocene, which are associated with the melting history of the Laurentide Ice Sheet (LIS) and relative sea‐level changes. During the early Holocene (10–8.5 cal. ka BP), high sedimentation rates together with mineralogical, geochemical and magnetic signatures indicate that sedimentation in the EGSL was mainly controlled by meltwater discharges from the local retreat of the southeastern margin of the LIS on the Canadian Shield. At this time, sediment‐laden meltwater plumes caused the accumulation of fine‐grained sediments in the ice‐distal zones. Since the mid‐Holocene, postglacial movements of the continental crust, related to the withdrawal of the LIS (c. 6 cal. ka BP), have triggered significant variations in relative sea level (RSL) in the EGSL. The significant correlation between the RSL curves and the mineralogical, geochemical, magnetic and grain‐size data suggest that the RSL was the dominant force acting on the sedimentary dynamics of the EGSL during the mid‐to‐late Holocene. Beyond 6 cal. ka BP, characteristic mineralogical, geochemical, magnetic signatures and diffuse spectral reflectance data suggest that the Canadian Maritime Provinces and western Newfoundland coast are the primary sources for detrital sediments in the Gulf of St. Lawrence, with the Canadian Shield acting as a secondary source. Conversely, in the lower St. Lawrence Estuary, detrital sediments are mainly supplied by the Canadian Shield province. Finally, our results suggest that the modern sedimentation regime in the EGSL was established during the mid‐Holocene.  相似文献   

15.
We measured in situ cosmogenic 10Be in 16 bedrock and 14 boulder samples collected along a 40-km transect outside of and normal to the modern ice margin near Sikuijuitsoq Fjord in central-west Greenland (69°N). We use these data to understand better the efficiency of glacial erosion and to infer the timing, pattern, and rate of ice loss after the last glaciation. In general, the ages of paired bedrock and boulder samples are in close agreement (r2 = 0.72). Eleven of the fourteen paired bedrock and boulder samples are indistinguishable at 1σ; this concordance indicates that subglacial erosion rates are sufficient to remove most or all 10Be accumulated during previous periods of exposure, and that few, if any, nuclides are inherited from pre-Holocene interglaciations. The new data agree well with previously-published landscape chronologies from this area, and suggest that two chronologically-distinct land surfaces exist: one outside the Fjord Stade moraine complex (~10.3 ± 0.4 ka; n = 7) and another inside (~8.0 ± 0.7 ka; n = 21). Six 10Be ages from directly outside the historic (Little Ice Age) moraine show that the ice margin first reached its present-day position ~7.6 ± 0.4 ka. Early Holocene ice margin retreat rates after the deposition of the Fjord Stade moraine complex were ~100–110 m yr?1. Sikuijuitsoq Fjord is a tributary to the much larger Jakobshavn Isfjord and the deglaciation chronologies of these two fjords are similar. This synchronicity suggests that the ice stream in Jakobshavn Isfjord set the timing and pace of early Holocene deglaciation of the surrounding ice margin.  相似文献   

16.
Thirteen samples from three cores and boreholes are examined using micromorphology to test existing interpretations of Late Quaternary sedimentary sequences from the Norwegian Channel, North Sea Fan and the North Sea Plateau. Previous studies have interpreted these sediments using arbitrary parameters as reflecting Late Weichselian subglacial and glacimarine conditions associated with the Scandinavian Ice Sheet and Norwegian Channel ice stream. This study develops existing micromorphological criteria to interpret the samples as reflecting specific processes of subglacial deformation and proximal and distal glacimarine sedimentation during and subsequent to the Last Glacial Maximum. The study concludes by outlining diagnostic criteria for the identification of these sediment types from core and borehole samples of other Quaternary sediments.  相似文献   

17.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

18.
Uummannaq Fjord, West Greenland, held the Uummannaq Ice Stream system that drained an estimated ~6% of the Greenland Ice Sheet (GrIS) during the Last Glacial Maximum. Published ages for the final deglaciation in Uummannaq Fjord vary from as early as c. 9.8 ka to as late as c. 5.3 ka. Assessing this variability requires additional chronological controls to improve the deglaciation history of central West Greenland. Here, we combine 14C dating of lake sediment cores with cosmogenic 10Be exposure dating at sites adjacent to the present GrIS margin in the central‐inland sector of the Uummannaq Fjord system. We find that ice retreated to or within the present GrIS margin at 10.8±0.2 ka (n = 6). Although this ‘final deglaciation’ to or within the present GrIS margin across the Uummannaq Fjord system varies from c. 10.8 to 5.3 ka, all chronologies indicate collapse from the continental shelf to the inner fjords at c. 11.0 ka, which occurred at a net retreat rate of 300–1100 m a−1. The Uummannaq Fjord system deglaciated c. 1000 years earlier than the major fjord system to the south, Disko Bugt. However, similarly rapid retreat rates of the two palaeo‐ice stream systems suggest that their collapse may have been aided by high calving rates. The asynchronous deglaciation of the GrIS throughout the Uummannaq Fjord system probably relates to the influence of varying fjord geometry on marine glacier behaviour.  相似文献   

19.
At the end of the Middle Weichselian (30–25 ka BP) a glacier advance from southern Norway, termed the Kattegat Ice Stream, covered northern Denmark, the Kattegat Sea floor and the Swedish West Coast during onset of the Last Glacial Maximum (LGM) at the southwest margin of the Scandinavian Ice Sheet. The lithostratigraphic unit deposited by the ice stream is the till of the Kattegat Formation (Kattegat till). Because morphological features have been erased by later glacial events, stratigraphic control and timing are decisive. The former ice stream is identified by the dispersal of Oslo indicator erratics from southern Norway and by glaciodynamic structures combined with glaciotectonic deformation of subtill sediments. Ice movement was generally from northerly directions and the flow pattern is fan-shaped in marginal areas. To the east, the Kattegat Ice Stream was flanked by passive glaciers in southern Sweden and its distribution was probably governed by the presence of low permeability and highly deformable marine and lacustrine deposits. When glaciers from southern Norway blocked the Norwegian Channel, former marine basins in the Skagerrak and Kattegat experienced glaciolacustrine conditions around 31–29 ka BP. The Kattegat Ice Stream became active some time between 29 ka BP and 26 ka BP, when glaciers from the Oslo region penetrated deep into the shallow depression occupied by the Kattegat Ice Lake. Deglaciation and an interlude with periglacial and glaciolacustrine sedimentation lasted until c. 24–22 ka BP and were succeeded by the Main Glacier Advance from central Sweden reaching the limit of Late Weichselian glaciations in Denmark around 22–20 ka BP, the peak of the LGM. This was followed by deglaciation and marine inundation in the Kattegat and Skagerrak around 17 ka BP.  相似文献   

20.
Seismostratigraphical studies of the 11.8‐km2‐large and ~140‐m‐deep Lake Bolshoye Shchuchye, Polar Ural Mountains, reveal up to 160‐m‐thick acoustically laminated sediments in the lake basin. Using a dense grid of seismic lines, the spatial and temporal distributions of the sedimentary history have been reconstructed. Three regional seismic horizons have been identified and correlated with the well‐dated 24‐m‐long sediment core retrieved from the lake. Isopach maps constructed from the seismic data show four phases of sedimentation. A contour map of the deepest regional seismic reflector represents the earliest hemipelagic sedimentation in the lake. Three contour maps represent time intervals covering the last 23 cal. ka based on the well‐dated core stratigraphy from the lake. The detailed time constraints on the upper stratigraphical units in the lake allow calculation of the lake's development in terms of sediment fluxes and the denudation rates from the Last Glacial Maximum (LGM) to the present. The sedimentation in Lake Bolshoye Shchuchye has been dominated by hemipelagic processes during at least the last 24 cal. ka BP only locally interrupted by delta progradation and slope processes. A major shift in the sediment accumulation at c. 18.7 cal. ka BP is interpreted to mark the end of the local glacial maximum, greatly reduced denudation and the onset of the deglaciation period; this also demonstrates how fast the glaciers melted and possibly disappeared at the end of the LGM. The denudation rate during the Holocene is only a fifth of the LGM rate. The age of the oldest stratified sediments in Lake Bolshoye Shchuchye is not well constrained, but estimated as c. 50–60 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号