首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高亚洲冰川质量变化趋势的卫星重力探测   总被引:3,自引:2,他引:1       下载免费PDF全文
利用高亚洲地区32个Mascon,基于GRACE RL05时变重力场模型频域和空域上的两种计算方法有效分离并提取出高亚洲冰川及其毗邻地区的等效水质量变化,得到2002—2013年期间高亚洲地区更为可靠的Mascon质量变化.高亚洲冰川质量变化的空间特征是:青藏高原内陆地区以正增长为主,边缘地区以负增长为主,在藏东南的最边缘地区冰川质量损失最为严重.天山地区、帕米尔和昆仑山地区、喜马拉雅山和喀喇昆仑山地区、青藏高原内陆地区冰川质量的平均变化趋势分别为-2.8±0.9Gt/a、-3.3±1.5Gt/a、-9.9±2.1Gt/a和5.0±0.8Gt/a,高亚洲冰川质量整体的平均变化趋势为-11.0±2.9Gt/a.印度等北部平原地区地下水平均变化趋势为-35.0±4.2Gt/a,该地区地下水信号泄漏是影响GRACE研究高亚洲冰川质量变化的关键因素,频域法和空域法能有效改正该地区地下水信号泄漏的影响.  相似文献   

2.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

3.
The Dissolved Organic Carbon (DOC) content of rivers is the most significant part of the carbon cycle migration in the basin under consideration, and it is the basis for a comprehensive understanding of the regional carbon cycle. In this study, we periodically collected samples from four monitoring stations in the Xiying River Basin of the Qilian Mountains in the northern Qinghai-Tibet Plateau. We calculated the fluxes of organic carbon in the rivers within the study area and have discussed the influencing factors of DOC concentration in these rivers. The results showed that: (a) The DOC concentration and transport flux of the Xiying river showed significant seasonal changes. The DOC concentration during summer and autumn was higher than that in winter and spring, and the output flux in summer and autumn accounted for approximately 88.3% of the total annual output. (b) Precipitation runoff has a higher DOC concentration than meltwater runoff. Climate factors, river-water chemical characteristics, and seasonal frozen-soil changes in the river basin have significant effects on the river DOC concentration and transport flux. (c) Larger runoff causes higher DOC concentrations in rivers. Runoff is the primary means of carbon migration in the inland river basin. Carbon migration is significant from the upstream to the middle and downstream sections of the inland river basin.  相似文献   

4.
依据青藏高原东北缘与秦岭大地构造格局相关联的地质构造背景,青藏高原物质东流和“稳定”块体的阻挡是华北南部地区构造活动的主要动力来源之一的基本认识,分析了青藏高原东北缘4次8级地震前华北南部地区地震活动的基本特征。8级地震震中区附近地震活动异常变化不明显,但华北南部地区地震异常活跃,其异常活跃过程与青藏高原东北缘强震的孕育与发生存在明显的相关性.具有一定的异地震情指示意义。  相似文献   

5.
The glaciers on Tibetan Plateau play an important role in the catchment hydrology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. In this study, the HBV light model, which adopts the degree‐day model for glacial melting, was employed to simulate the total runoff, the glacier runoff and glacier mass balance (GMB) of the Dongkemadi River Basin (DRB) at the headwater of the Yangtze River on the Tibetan Plateau, China. Firstly, the daily temperature and precipitation of the DRB from 1955 to 2008 were obtained by statistical methods, based on daily meteorological data observed in the DRB (2005–2008) and recorded by four national meteorological stations near the DRB (1955–2008). Secondly, we used 4‐year daily air temperature, precipitation, runoff depth and monthly evaporation, which were observed in the DRB, as input to obtain a set of proper parameters. Then, the annual runoff, the glacier runoff and GMB (1955–2008) were calculated using the HBV model driven by interpolated meteorological data. The calculated GMB fits well with the observed results. At last, using the temperature and precipitation predicted by climate models, we predicted the changes of runoff depth and GMB of the DRB in the next 40 years. Under all climate‐change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
中国21kaBP气候模拟的初步试验   总被引:15,自引:2,他引:13  
陈星  于革  刘健 《湖泊科学》2000,12(2):154-164
本文使用含有陆面过程的9层大气环流谱模式(AGCM+SSiB),在地球轨道参数和下垫面边界条件驱动下,对21kaBP的气候进行模拟试验。结果表明,21kaBP时中国东部干旱,西部和青藏高原湿润,全国普遍降温。该模拟结果基本捕捉了由古湖泊资料和孢粉资料重建的气候特征。对模式输出的大气环流场和降水场的分析揭示出,21kaBP东亚夏季风环流明显减弱,而青高原夏季风环流增强;冬季风环流较现在略有增强。该模  相似文献   

8.
River runoff in the Arctic and the Tibetan Plateau(TP) change significantly in recent decades. However, the mechanisms of the physical processes of permafrost river runoff change remain uncertain across large scale. This study investigated the mainstreams and tributaries of main Arctic and TP rivers dominated by permafrost and assessed the linkage between hydrological regime change and permafrost. The results show that the effects of permafrost on river runoff are highly dependent on the permafrost coverage of a watershed. For the past decades, the majority of the Arctic and TP basins showed increased discharge, while all of the studied basins showed increased baseflow, with faster increasing speed than total discharge.Both total discharge and baseflow annual change rate(ΔQ and ΔBF) increased with permafrost coverage, indicating the increments of streamflow are enhanced with high permafrost coverage. Meanwhile, the annual change of precipitation showed weak connection with total discharge and baseflow change. The high permafrost coverage basins showed high annual maximum/minimum discharge ratio(Qmax/Qmin), while the Qmax/Qminchanged slightly in low permafrost cover basins. Our results highlight the importance of permafrost coverage on streamflow regime change for permafrost basins across the northern hemisphere. Due to these linkage between permafrost extent and runoff regime change and the increasing changes of permafrost, more attention should be paid to the change of hydrological processes in permafrost-underlain basins.  相似文献   

9.
The Tibetan Plateau (TP) is the “water tower of Asia” and it plays a key role on both hydrology and climate for southern and eastern Asia. It is critical to explore the impact of climate change on runoff for better water resources management in the TP. However, few studies pay attention to the runoff response to climate change in large river systems on the TP, especially in data-sparse upstream area. To complement the current body of work, this study uses two rainfall-runoff models (SIMHYD and GR4J) to simulate the monthly and annual runoff in the upstream catchments of the Yarlung Tsangpo River basin (YTR) under historical (1962–2002) and future (2046–2065 A1B scenario) climate conditions. The future climate series are downscaled from a global climate model (MIROC3.2_hires) by a high resolution regional climate model (RegCM3). The two rainfall-runoff models successfully simulate the historical runoff for the eight catchments in the YTR basin, with median monthly runoff Nash–Sutcliffe Efficiency of 0.86 for SIMHYD and 0.83 for GR4J. The mean annual future temperature in eight catchments show significant increase with the median of +3.8 °C. However, the mean annual future precipitation shows decrease with the median of ?5.8 % except in Lhatse (+2.0 %). The two models show similar modeling results that the mean annual future runoff in most of catchments (seven in eight) shows decrease with the median of ?13.9 % from SIMHYD and ?15.2 % from GR4J. The results achieved in this study are not only helpful for local water resources management, but also for future water utilization planning in the lower reaches region of the Brahmaputra.  相似文献   

10.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
西北太平洋副热带高压(以下简称副高)是影响中国气候的大尺度环流系统,为了进一步了解副高对中国气候的影响,本文利用站点观测资料和大气环流再分析资料,通过资料诊断分析和数值模拟方法,探讨了6月副高东西变动对中国南部降水的影响,以及影响副高东西变动的前期海洋因子.结果表明副高东西变动对中国西南和华南地区降水的影响明显不同:副高偏东有利于降水西南偏多而华南偏少,偏西则降水变化刚好相反.其原因与副高东西变化引起的环流差异有关,华南降水与副高东(西)变动时西太平洋地区副高西北侧的东北(西南)风异常以及东亚中低纬度地区异常经向波列的变化直接有关,而西南降水异常不仅与副高东西变动在东南亚地区引起的纬向风异常有关,与青藏高原大地形动力作用对副高北侧异常纬向风的变化也有十分密切的联系.此外,副高东西变动时影响西南和华南地区的水汽来源不同,影响西南的水汽主要来源于赤道印度洋80°E附近越赤道气流,而影响华南的水汽主要来源于副高南侧偏东气流从西北太平洋地区输送的水汽.进一步分析发现前期冬春季热带西北太平洋和赤道西太平洋海温变化的偶极差异与后期初夏副高东西变动有密切联系,冬春季西北太平洋暖海温和赤道西太平洋冷海温变化有利于后期初夏副高偏西,相反则有利于副高偏东,数值模拟结果在一定程度证实了资料诊断分析结果.  相似文献   

12.
青藏高原上分布着大量的大陆性冰川,其对区域及全球气候变化响应极其敏感.工业革命以来,随着全球升温速率加快(特别是北半球),青藏高原部分地区的冰川在近百年显著退缩.冰前湖沉积物是最直接的冰川变化记录载体之一,但其沉积速率如何响应冰川及气候变化,能否反演冰川进退过程却知之甚少.本文依据~(210)Pb和~(137)Cs限定藏南冰前湖枪勇错QY5沉积岩芯的年龄,计算出不同深度沉积物的沉积速率,且与前人(QY-3)的沉积速率进行对比,揭示了近百年来枪勇错流域冰川变化历史及其与气温之间的关系.结果表明,枪勇错QY5近百年来的平均沉积速率为0.21 cm/a,比湖心(QY-3)快2倍左右,但两者的变化基本同步,高沉积速率对应温度上升期,是冰川退缩的直接响应:(1)1900—1960年,枪勇错沉积速率整体增加且变幅较大,与1890—1950年之间西藏温度波动式升高相对应,反映枪勇冰川总体处于退缩状态;(2)1960—1985年,沉积速率低且变幅较小,同期气温下降,枪勇冰川退缩程度相对较低且保持平稳;(3)1985年以来,枪勇错沉积速率呈上升趋势,是全球增暖下冰川显著退缩的直接响应.在短时间尺度内冰前湖沉积速率所揭示的枪勇冰川变化主要受控于温度,降水量对冰川变化的影响较小,但冰川对温度变化的响应滞后5~10 a.由于全球变暖和冰川对温度响应的滞后,在未来几十年高原冰川的融化速率可能会加快,亚洲水塔将面临着新的挑战.  相似文献   

13.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Simulations of LGM climate of East Asia by regional climate model   总被引:3,自引:0,他引:3  
ClimateconditionsintheLastGlacialMaximum(LGM)wereremarkablydifferentfromthepresentones.LGMglobalmeantemperaturewas5℃-10℃dropbutprecipitationdecreasescommonly.LGMhasbecomethekeyphasetoreconstructtheearthenvironmentalfield,retrieveextremecoldclimatecondit…  相似文献   

15.
The Tibetan Plateau (TP) is widely known as the ‘Asian Water Tower’, due to its role in providing fresh water to downstream Asian countries. Based on the runoff data of large river basins on the TP, the weighted average proportion of the TP runoff is approximately 18% (ranging from 6% to 49%) for all the rivers. We argue that the name ‘Water Tower’ is an inappropriate and misleading perception of the TP, and such misperception would influence policy-making processes and diplomatic activities. We therefore call for correcting the misunderstanding and an ensuring accurate understanding of the TP and its role in water supply for downstream countries. We propose using the term “Towering Asian Spring” instead of “Asian Water Tower” to better illustrate the role of the TP in water supply: while it serves as the source of several major rivers in Asia, its contribution to the overall water supply is relatively limited.  相似文献   

16.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
The origins and spread of agriculture was one of the milestones in human history. When and how prehistoric agriculture spread to mainland Southeast Asia is highly concerned, which contributed to the formation of modern Austroasiatic in this region. Previous studies mainly focused on the time and route of rice agriculture's introduction into Southeast Asia while millet agriculture was not paid proper attention. Here we analyze 312 ~(14)C dating data yielded from charred seeds of rice(Oryza sativa), foxtail millet(Setaria italica) and broomcorn millet(Panicum miliaceum) from 128 archaeological sites in China and mainland Southeast Asia. The result shows that millet farming was introduced to mainland Southeast Asia in the late third millennium BC and rice farming was in the late second millennium BC. The agriculture of mainland Southeast Asia might originate from three areas, Southwest China, Guangxi-West Guangdong and coastal Fujian. The spread route of ancient agriculture in Southwest China is close to the "Southwest Silk Road" recorded in literature, which implies there was possibly a channel of cultural exchanges on the eastern margin of Tibetan Plateau already in the late Neolithic period, laying the foundation for the Southwest Silk Road later.  相似文献   

18.
Since the 1960s, dramatic changes have taken place in land-use patterns characterized by the persistent expansion of cultivated land and a continuous decrease in natural woodland and grassland in the arid inland river basins of China. It is very important to assess the effects of such land-use changes on the hydrological processes so vital for water resource management and sustainable development on the catchment scale. The Maying River catchment, a typical arid inland watershed located in the middle of the Hexi Corridor in northwest China, was the site chosen to investigate the hydrological responses to land-use changes. The annual runoff, base flow, maximum peak flow, and typical seasonal runoff in both spring and autumn flood periods were selected as the variables in the hydrological processes. Statistical-trend analysis and curvilinear regression were utilized to detect the trends in hydrological variables while eliminating the climatic influence. The relationship between cultivated land-use and hydrological variables was analyzed based on four periods of land-use variation data collected since 1965. A runoff model was established composed of two factors, i.e., cultivated land use and precipitation. The impact of land use changes, especially in the large ar- eas of upstream woodland and grassland turned into cultivated lands since 1967, has resulted in a mean annual runoff decrease of 28.12%, a base flow decline of 35.32%, a drop in the maximum peak discharge of 35.77%, and mean discharge decreases in spring and autumn of 36.05% and 24.87% respectively, of which the contribution of cultivated land expansion to the influence of annual runoff amounts to 77%-80%, with the contribution to the influence of spring discharge being 73%-81%, and that to the influence of base flow reaching 62%-65%. Thus, a rational regulation policy of land use patterns is vitally important to the sustainable use of water resources and the proper development of the entire catchment.  相似文献   

19.
Qiaoling Guo  Yang  Yunsong  Su  Ning  Li  Jianlin  Wang  Xinyi 《Water Resources》2019,46(6):871-882
Water Resources - The Kuye river watershed is a coal mining watershed in Northwest China. The study analyzed runoff change of year, high flow period and low flow period in the past 60 years based...  相似文献   

20.
中国大陆及周边地区现代岩石圈演化动力学模拟   总被引:25,自引:6,他引:25       下载免费PDF全文
采用有限元方法模拟了近20万年来青藏高原岩石圈形变演化过程,探讨了印度-欧亚大陆的碰撞对中国大陆岩石层形变和应力场的影响以及它们与强地震活动性的关系.结合现代GPS、地震和地质学观测的结果,对比分析了中国大陆在百万年、十万年和十年尺度上的形变和构造应力场的基本格局.研究表明:(1)印度-欧亚大陆的碰撞以及印度大陆的持续向北推进、挤压所产生的应力环境,一直主导了以青藏高原为核心的我国西部地域岩石圈构造、运动和演化,但其影响随着远离青藏高原地区而逐渐变小.(2)断层滑移和重力势作用对于青藏高原东西部以及塔里木盆地的影响相当大,它们导致青藏高原岩石层东西向形变速率增大,对青藏高原的中南部地区产生拉张效应,同时导致塔里木盆地出现整体的右旋趋势.(3)青藏高原区域水平方向形变速率和GPS观测结果吻合较好.但在垂直方向上,一些地区计算结果与观测数据相差较大,这说明单纯的挤压作用不是现代青藏高原隆升的惟一机制.现代青藏高原的隆升可能与其他驱动机制,如地幔对流、重力均衡以及剥蚀作用等有关.(4)印度板块的挤压作用基本上决定了中国大陆西部的主压应力场分布.(5)印度板块的碰撞对中国大陆的强地震活动性有重要影响,但华北地区是个例外,该地区的地震活动性很强而印度板块的挤压在该区域产生的影响却很小,说明其他的驱动力在一定程度上活化了华北地块.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号