首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
Simulated outgoing longwave radiation (OLR) outputs by two versions of the grid-point atmospheric general circulation model (GAMIL) were analyzed to assess the influences of improvements in cloud microphysics and convective parameterization schemes on the simulation of the Madden-Julian oscillation (MJO) and other tropical waves. The wavenumber-frequency spectral analysis was applied to isolate dominant modes of convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and inertio-gravity (IG) waves. The performances of different versions of the GAMIL model (version 1.0 (GAMIL1.0) and version 2.0 (GAMIL2.0)) were evaluated by comparing the power spectrum distributions of these waves among GAMIL1.0, GAMIL2.0, and observational data. GAMIL1.0 shows a weak MJO signal, with the maximum variability occurring separately at wavenumbers 1 and 4 rather than being concentrated on wavenumbers 1–3, suggesting that GAMIL1.0 could not effectively capture the intraseasonal variability. However, GAMIL2.0 is able to effectively reproduce both the symmetric and anti-symmetric waves, and the significant spectra of the MJO, Kelvin, and MRG waves are in agreement with observational data, indicating that the ability of GAMIL2.0 to simulate the MJO and other tropical waves is enhanced by improving the cloud microphysics and convective parameterization schemes and implying that such improvements are crucial to further improving this model’s performance.  相似文献   

2.
The Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) has been developed through upgrading the deep convection parameterization, cumulus cloud fraction and two-moment cloud microphysical scheme, as well as changing some of the large uncertain parameters. In this paper, its performance is evaluated, and the results suggest that there are some significant improvements in GAMIL2 compared to the previous version GAMIL1, for example, the components of the energy budget at the top of atmosphere (TOA) and surface; the geographic distribution of shortwave cloud radiative forcing (SWCF); the ratio of stratiform versus total rainfall; the response of atmospheric circulation to the tropical ocean; and the eastward propagation and spatiotemporal structures of the Madden Julian Oscillation (MJO). Furthermore, the indirect aerosols effect (IAE) is -0.94 W m-2, within the range of 0 to -2 W m-2 given by the IPCC 4th Assessment Report (2007). The influence of uncertain parameters on the MJO and radiation fluxes is also discussed.  相似文献   

3.
CAPT(Climate Change Prediction Program and Atmospheric Radiation Measurement Program(CCPP-ARM) Parameterization Testbed) has been a valuable tool to assess climate models in recent years,and the Tropical Warm Pool-International Cloud Experiment(TWP-ICE) has collected comprehensive measurements to verify its physical parameterizations.The present study evaluates the performances of the two GAMIL(grid-point atmospheric model of IAP LASG) versions during TWP-ICE using CAPT.The results indicate that GAMIL2.0 reproduced better shifts of clouds and rainfall during three distinct monsoon phases than GAMIL1.0,although both of them simulated the large-scale dynamical states well,which are mainly attributable to the different convective parameterizations.  相似文献   

4.
The radon transport test, which is a widely used test case for atmospheric transport models, is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL). Two of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere, which implies potentially large errors in the simulation of ozone-like tracers. Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation. The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases. Other potential effects of this inconsistency are also discussed. Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model. At least for the polax-region-concentrated atmospheric components and the closely correlated chemical species, the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.  相似文献   

5.
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室( LASG/IAP)发展的大气环流格点模式(GAMIL1.0)对1980~1999年西北太平洋夏季风的模拟,讨论了阵风参数化方案对模拟效果的影响.结果表明:GAMIL1.0能合理再现西北太平洋夏季风气候态和年际变率的主要特征,不足之处在于其...  相似文献   

6.
The Grid-point Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) is used to investigate the impacts of different convective schemes on the radiative energy budget.The two convective schemes are Zhang and McFarlance (1995)/Hack (1994) (ZM) and Tiedtke (1989)/Nordeng (1994) (TN).Two simulations are performed:one with the ZM scheme (EX_ZM) and the other with the TN scheme (EX_TN).The results indicate that during the convective process,more water vapor consumption and temperature increment are found in the EX_ZM,especially in the lower model layer,its environment is therefore very dry.In contrast,there is a moister atmosphere in the EX_TN,which favors low cloud formation and large-scale condensation,and hence more low cloud fraction,higher cloud water mixing ratio,and deeper cloud extinction optical depth are simulated,reflecting more solar radiative flux in the EX_TN.This explains why the TN scheme underestimates the net shortwave radiative flux at the top of the atmosphere and at surface.In addition,convection influences longwave radiation,surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.  相似文献   

7.
The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG (GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are examined in this paper. The results show that the model with both schemes can reproduce the heavy precipitation center over the Yangtze-Huai River Basin (YHRB) during the Meiyu period. The horizontal and vertical structures of the circulation systems during the Meiyu period are also well simulated,such as the intensive meridional gradients of moisture and μse (pseudo-equivalent temperature), the strong low-level southwesterly flow in the lower troposphere over East China, the location of the westerly jet stream in the upper troposphere, the strong ascending motion in heavy precipitation zone, and compensation downward motion on the northern and southern sides of the heavy precipitation belt. However, obvious discrepancies occur in the simulated temperature field in the mid-lower troposphere,especially with the Zhang-McFarlane scheme. In addition, the simulated Meiyu period (onset and duration) is found to be associated with the temperature difference in the lower atmosphere over the land and ocean, and with the cumulus parameterization schemes. The land-sea thermal contrast (LSTC) simulated by the Zhang-McFarlane scheme increases faster than that in the reanalysis from April to July, and changes from negative to positive at the end of May. Consequently, the simulated Meiyu onset begins in May, one month earlier than the observation. On the other hand, since the LSTC simulated by the Tiedtke scheme is in agreement with the reanalysis during June and July, the simulated Meiyu period is similar to the observation. The different LSTCs simulated by the GAMIL model with the two cumulus parameterization schemes may affect the Meiyu period simulations. Therefore, it is necessary to refine the cumulus parameterization scheme in order to improve the Meiyu precipitation simulation by the GAMIL model.  相似文献   

8.
The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in simulating precipitation in the tropics. These biases seem to result mainly from the treatment of the subgrid scale convection, which is parameterized with Tiedtke's massflux scheme (or the Zhang-McFarlane scheme, as an option) in the model. In order to reduce the systematic biases, several modifications were made to the Tiedtke scheme used in GAMIL, including (1) an increase in lateral convective entrainment/detrainment rate for shallow convection, (2) inclusion of a relative humidity threshold for the triggering of deep convection, and (3) a reduced efficiency for the conversion of cloud water to rainwater in the convection scheme.
Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates.  相似文献   

9.
通过引人中尺度对流运动对海表湍流通量的贡献,改进了大气环流模式GAMIL1.0的海气湍流通量参数化方案.利用1979年1月至2000年12月的观测海温资料驱动GAMIL1.0模式,研究了海气湍流通量参数化改进对大气环流年际变化模拟效果的影响.结果表明:采用改进的海气湍流通量参数化方案,模拟的热带海表湍流热通量得到增强,...  相似文献   

10.
The Madden–Julian oscillation (MJO) is simulated using an AGCM with three different cumulus parameterization schemes: a moist convective adjustment (MCA) scheme, the Zhang–McFarlane (ZM) mass-flux scheme, and the Tiedtke scheme. Results show that the simulated MJO is highly dependent on the cumulus parameterization used. Among the three cumulus parameterizations, only the MCA scheme produces MJO features similar to observations, including the reasonable spatial distribution, intraseasonal time scales and eastward propagation. Meanwhile, the amplitude is too large and the eastward propagation speed too fast than observations and the relationship between precipitation and low-level wind anomaly is unrealistic with enhanced convection occurring within easterly anomalies instead of westerly anomalies as in observations. The over-dependence of precipitation on boundary convergence produced by the MCA scheme is presumably responsible for this unrealistic phase relation in the simulation. The other two schemes produce very poor simulations of the MJO: spectral power of westward propagation is larger than that of eastward propagation in zonal wind and precipitation, indicating a westward propagation of the intraseasonal variability.The mean state and vertical profile of diabatic heating are perhaps responsible for the differences in these simulations. The MCA scheme produces relatively realistic climate background. When either ZM or Tiedtke scheme is used, the observed extension of westerly winds from the western Pacific to the dateline is missing and precipitation over the equatorial region and SPCZ is dramatically underestimated. In addition, diabatic heating produced by both ZM and Tiedtke schemes are very weak and nearly uniform with height. The heating profile produced by the MCA scheme has a middle-heavy structure with much larger magnitude than those produced by the other two schemes. In addition, a very unrealistic boundary layer heating maximum produced by the MCA scheme induces too strong surface convergence, which perhaps contributes to the too strong intraseasonal variability in the simulation.  相似文献   

11.
Recently, a new atmospheric general circulation model (GAMIL: Grid-point Atmospheric Model of IAP LASG) has been developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), which is based on the Community Atmospheric Model Version 2 (CAM2) of the National Center for Atmospheric Research (NCAR). Since the two models have the same physical processes but different dynamical cores, the interannual variability simulation performances of the two models are compared. The ensemble approach is used to reduce model internal variability. In general, the simulation performances of the two models are similar. Both models have good per- formance in simulating total space-time variability and the Southern Oscillation Index. GAMIL performs better in the Eastern Asian winter circulation simulation than CAM2, and the model internal variability of GAMIL has a better response to external forcing than that of CAM2. These indicate that the improvement of the dynamic core is very important. It is also verified that there is less predictability in the middle and high latitudes than in the low latitudes.  相似文献   

12.
Using reanalysis data as a benchmark,the authors evaluate the performance of an Atmospheric General Circulation Model(AGCM) named GAMIL(Grid-point Atmospheric Model of LASG/IAP).GAMIL is used to simulate the tropospheric temperature anomalies associated with the El Nio-Southern Oscillation(ENSO) in boreal winters for the period 1980-99.The results show that the symmetrical components of temperature anomalies simulated by GAMIL closely resemble those in the reanalysis data in spatial patterns,especially in the Northern Hemisphere.The limitation of the model is that the simulated cold anomaly over South Asia is located to the east of the reanalysis.The observed temperature anomalies in the South Pacific and the high latitudes of the Southern Hemisphere are not evident in the simulation.The maximum value is 0.8 K smaller and the minimum value is-0.4 K smaller than the reanalysis.The difference between the simulation and the reanalysis is more evident in the regional features of the asymmetrical components of the temperature anomalies.Our results demonstrate that the previously discovered weak response of the GAMIL model to specified sea surface temperature forcing is dominated by the symmetric(asymmetric) component in the tropics(extra-tropics).  相似文献   

13.
The status of the numerical reproduction of the Madden–Julian Oscillation (MJO) by current global models was assessed through diagnoses of four pairs of coupled and uncoupled simulations. Slow eastward propagation of the MJO, especially in low-level zonal wind, is realistic in all these simulations. However, the simulated MJO suffers from several common problems. The MJO signal in precipitation is generally too weak and often eroded by an unrealistic split of an equatorial maximum of precipitation into a double ITCZ structure over the western Pacific. The MJO signal in low-level zonal wind, on the other hand, is sometimes too strong over the eastern Pacific but too weak over the Indian Ocean. The observed phase relationship between precipitation and low-level zonal wind associated with the MJO in the western Pacific and their coherence in general are not reproduced by the models. The seasonal migration in latitude of MJO activity is missing in most simulations. Air–sea coupling generally strengthens the simulated eastward propagating signal, but its effects on the phase relationship and coherence between precipitation and low-level zonal wind, and on their geographic distributions, seasonal cycles, and interannual variability are inconsistent among the simulations. Such inconsistency cautions generalization of results from MJO simulations using a single model. In comparison to observations, biases in the simulated MJO appear to be related to biases in the background state of mean precipitation, low-level zonal wind, and boundary-layer moisture convergence. This study concludes that, while the realistic simulations of the eastward propagation of the MJO are encouraging, reproducing other fundamental features of the MJO by current global models remains an unmet challenge.
Chidong ZhangEmail:
  相似文献   

14.
郭准  周天军 《大气科学》2012,36(5):863-878
1997/98年强E1 Ni(n)o背景下西太平洋暖池区云辐射强迫的变化,表现出诸多不同于以往的特征,已经成为检验气候模式性能的一个重要标准.本文基于卫星资料,分析了大气环流模式GAMIL1.0和2.0版对上述现象的模拟能力.结果表明,GAMIL1.0模式对热带地区云辐射特征分布,尤其对西太平洋暖池区的长(短)波云辐射...  相似文献   

15.
GAMIL CliPAS试验对夏季西太平洋副热带高压的预测   总被引:4,自引:0,他引:4  
利用GAMIL CliPAS"两步法"季度预测试验,检验了后报的1980~1999年北半球夏季西太平洋副热带高压(简称副高)的年际变化,检查了Seoul National University(SNU)动力统计预测系统对SST预测准确度,并讨论了影响中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室格点大气模式(GAMIL)对副高预测效果的可能原因.500 hPa位势高度可预报性指数表明西太平洋副高具有较高可预报性.集合平均基本能再现西太平洋副高的变率特征,但最大方差的位置和强度与观测稍有区别.观测证据显示,副高存在2~3年变率和3~5年变率.且2~3年变率比3~5年变率强.GAMIL能够准确预测观测副高的3~5年变率,尽管其强度要强于观测.这与试验所用的预测海温能够很好表现赤道中东太平洋(5.5°S~5.5°N,190.5°E~240.5°E)海温的年际变率有关.同时,GAMIL预测的副高2~3年变率较之观测显著偏弱,这可能与SNU预测的海洋大陆地区(5.5°S~0.5°N,110.5°E~130.5°E)SST的2~3年变率偏弱有关.分析表明,SNU预测海温的这种弱点,与SNU海温统计预测模式所用的历史海温(OISST)本身对海洋大陆地区2~3年变率的刻画能力较弱有关.  相似文献   

16.
Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO.
We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill.  相似文献   

17.
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden–Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.  相似文献   

18.
Tropical cyclone genesis potential index(GPI) is a useful metric for gauging the performance of global climate models in the simulation of tropical cyclone(TC) genesis.The performance of LASG/IAP AGCM GAMIL2.0 in the simulation of GPI over the western North Pacific(WNP) is assessed in this paper.Since GPI depends on large scale environmental factors including low-level vorticity at 850 hPa,relative humidity at 700 hPa,vertical wind shear between 850 and 200 hPa,maximum potential intensity(MPI),and vertical velocity,the bias of GPI simulation is discussed from the perspective of thermal and dynamical factors.The results are compared with the ECMWF reanalysis data(ERA40).The analyses show that both the climatological spatial pattern and seasonal cycle of GPI over the WNP are reasonably simulated by GAMIL2.0,but due to the overestimation of relative humidity,the simulated GPI extends to 170°E,about 10°east to that in the reanalysis data.It is demonstrated that the bias in the simulation of monsoon trough,which is about 5°north to the reanalysis,leads to an overestimation of GPI during May-June and September-October,but an underestimation during July-August.Over the WNP,the response of GPI to ENSO is well captured by GAMIL2.0,including the eastward(westward) shift of TC genesis location during El Nin o(La Nin a) years.However,the anomalous convective center associated with El Nin o shifts westward about 20°in comparison to ERA40,which leads to the biases in both vertical velocity and relative humidity.These eventually result in the westward deflection of the boundary between the positive and negative GPI centers along 20°-30°N.The results from this study provide useful clues for the future improvement of GAMIL2.0.  相似文献   

19.
Ping Liu 《Climate Dynamics》2013,40(3-4):761-773
This study estimates how the Madden-Julian oscillation (MJO) will change with uniform global warming of 2 and 4 K at the Earth surface using an aqua-planet version of the NCAR CAM2 implemented with the Tiedtke convection scheme. Solar insolation is specified at the vernal equinox with a diurnal cycle. Thirty-year integrations are carried out for each case and the last 20-year’s results are used for analysis. For the warmer cases, the modeled MJO’s eastward propagation remains dominant at zonal wave numbers 1–4, and notable increase occurs in variance, power spectra, and the number of prominent MJO events. The convective heating is enhanced more in upper troposphere, and the MJO power spectra increase more on 20–30 days than on 30–60 days. In all cases, composite life cycles of prominent MJO events show that the anomalous surface latent heat flux lags precipitation by about 90° in phase, characterizing the nonlinear wind induced surface heat exchange (WISHE) to destabilize the MJO. Interacting with a warmer surface in the 4 K case, perturbations of zonal wind and temperature at bottom model level contribute to the nonlinear WISHE coherently with the latent heat flux. Meanwhile anomalous boundary layer convergence leads precipitation by some 45° in phase, indicating the frictional moisture convergence to maintain the enhanced MJO.  相似文献   

20.
GAMIL CliPAS试验对夏季西太平洋副高的预测   总被引:2,自引:1,他引:1  
邹立维  周天军  吴波 《大气科学》2009,33(5):959-970
利用GAMIL CliPAS “两步法” 季度预测试验, 检验了后报的1980~1999年北半球夏季西太平洋副热带高压 (简称副高) 的年际变化, 检查了Seoul National University (SNU) 动力统计预测系统对SST预测准确度, 并讨论了影响中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室格点大气模式 (GAMIL) 对副高预测效果的可能原因。500 hPa位势高度可预报性指数表明西太平洋副高具有较高可预报性。集合平均基本能再现西太平洋副高的变率特征, 但最大方差的位置和强度与观测稍有区别。观测证据显示, 副高存在2~3年变率和3~5年变率, 且2~3年变率比3~5年变率强。GAMIL能够准确预测观测副高的3~5年变率, 尽管其强度要强于观测。这与试验所用的预测海温能够很好表现赤道中东太平洋 (5.5°S~5.5°N, 190.5°E~240.5°E) 海温的年际变率有关。同时, GAMIL预测的副高2~3年变率较之观测显著偏弱, 这可能与SNU预测的海洋大陆地区 (5.5°S~0.5°N, 110.5°E~130.5°E) SST的2~3年变率偏弱有关。分析表明, SNU预测海温的这种弱点, 与SNU海温统计预测模式所用的历史海温 (OISST) 本身对海洋大陆地区2~3年变率的刻画能力较弱有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号