首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Stratification (throughout the year) and low solar radiation (during monsoon periods) have caused low chlorophyll a and primary production (seasonal average 13–18 mg m−2 and 242–265 mg C m−2 d−1, respectively) in the western Bay of Bengal (BoB). The microzooplankton (MZP) community of BoB was numerically dominated by heterotrophic dinoflagellates (HDS) followed by ciliates (CTS). The highest MZP abundance (average 665±226×104 m−2), biomass (average 260±145 mg C m−2) and species diversity (Shannon weaver index 2.8±0.42 for CTS and 2.6±0.35 for HDS) have occurred during the spring intermonsoon (SIM). This might be due to high abundance of smaller phytoplankton in the western BoB during SIM as a consequence of intense stratification and nitrate limitation (nitracline at 60 m depth). The strong stratification during SIM was biologically evidenced by intense blooms of Trichodesmium erythraeum and frequent Synechococcus–HDS associations. The high abundance of smaller phytoplankton favors microbial food webs where photosynthetic carbon is channeled to higher trophic levels through MZP. This causes less efficient transfer of primary organic carbon to higher trophic levels than through the traditional food web. The microbial food web dominant in the western BoB during SIM might be responsible for the lowest mesozooplankton biomass observed (average 223 mg C m−2). The long residence time of the organic carbon in the surface waters due to the active herbivorous pathways of the microbial food web could be a causative factor for the low vertical flux of biogenic carbon during SIM.  相似文献   

2.
Dilution experiments were used to investigate the phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea during 30 June and 7 July, 2008, occurring about a week after Typhoon Fengshen. We detected negative phytoplankton growth rates (−0.03 to −2.02 d−1) and measured grazing rates of microzooplankton on phytoplankton in size-fractionations of 20-200 μm (1.25±0.44 d−1), 3-20 μm (1.48±0.63 d−1) and <3 μm (1.02±0.42 d−1). Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates, between phytoplankton and ciliate abundance, and between the dominant phytoplankton Thalassionema nitzschioides and the dominant ciliate Helicostomella longa (p<0.05). Phytoplankton decay, due to nutrient-limited conditions occurring with the fading of upwelling and spreading of freshwater plume after Typhoon Fengshen, may account for negative phytoplankton growth rates in this study. Synergism in the specific size-selective grazing of various species, including ciliates and heterotrophic dinoflagellates, may contribute to similar grazing rate on phytoplankton in different size-fractionations, at the integrated level. Interactions between phytoplankton and microzooplankton, including grazing selectivity, top-down and bottom-up control between phytoplankton and microzooplankton may contribute to these findings. Our results indicate that under conditions of negative phytoplankton growth microzooplankton grazing may reduce energy loss from the epipelagic waters by retrieving energy from the decaying phytoplankton community.  相似文献   

3.
The effect of monsoon, coastal current and temperature on the distribution and seasonal variations of Calanus sinicus abundance were studied. The samples from the northwest continental shelf of South China Sea were collected with 505 μm planktonic nets from July 2006 to October 2007. The abundance of C. sinicus made up 34.28% and 12.34% of all copepods in spring and summer, respectively. The distribution of C. sinicus varied seasonally and regionally. The distribution of C. sinicus ranged between east inshore and offshore waters from the Leizhou Peninsula to Hainan Island, with a mean of 23.00 (±77.78) ind. m−3 in spring. In summer it had a mean of 13.74 (±45.10) ind. m−3 occurring only in the east inshore waters from Leizhou Peninsula to Hainan Island. C. sinicus was not abundant during autumn and winter seasons. The surveyed area was divided into three sub-regions based on topographical analysis and water mass, region I (included the east inshore waters of Leizhou Peninsula), region II (included the east inshore waters of Hainan Island) and region III (included the offshore waters from Leizhou Peninsula to Hainan Island). The average abundance of C. sinicus within region I was determined to be 115.63 (±145.93) and 68.12 (±84.00) ind. m−3 in spring and summer, respectively, values higher than those of regions II and III. Our findings suggested that C. sinicus was transported from the East China Sea to the northwest continental shelf of South China Sea by the Guangdong Coastal Current, which was driven by the northeast monsoon in spring. The presence of a cold eddy, in addition to coastal upwelling driven by the southwest monsoon, provided suitable survival conditions for C. sinicus in summer. This species disappeared in autumn due to high temperatures (>27 °C) and did not begin to enter into the northwest continental shelf of South China Sea from the East China Sea during the period of investigation in winter. The frequency of C. sinicus was low in region III during the year as a result of the South China Sea Warm Current and pelagic waters with high temperature during the spring and summer months.  相似文献   

4.
The plankton was examined as an indicator of water quality in 14 shrimp Litopenaeus vannamei farms in Brazil in 2003. The ponds were categorized by high stocking density (>30 PL m−2) of phytoplankton, consisting of 51 species with concentrations ranging from 365,218 ± 416,615 cells mL−1 to 1,961,675 ± 3,160,172 cells mL−1. Diatoms contributed to almost 70% of the species number and high densities resulted from Cyanophyta blooms, mainly Pseudanabaena cf limnetica. Forty zooplankton taxa were registered and were essentially composed of typical marine euryhaline species and suspension-feeders. Copepoda dominated (45%) the make-up, followed by Protozoa (18%), Rotifera (12%), and Mollusca (12%) larvae. Zooplankton varied from 972 ± 209 ind m−3 to 4235 ± 2877 ind m−3. Enhanced nutrient input affected plankton density and composition. Diatom and Copepoda dominance was replaced by cyanobacteria, protozoan, and rotifers as nutrient concentrations increased with the cultured period, indicating that plankton structure is affected by eutrophic conditions.  相似文献   

5.
6.
The radionuclides 210Po and 210Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mgC m−2 d−1. However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from 210Po/210Pb disequilibria, are 43 mgC m−2 d−1 and 13.8 mgN m−2 d−1, respectively. The deficit of 210Po relative to 210Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mgC m−2 d−1 and 121 mgN m−2 d−1 were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m−1, respectively. Thus, 210Po and 210Pb can quantify the cycling of carbon and nitrogen in this coral lagoon.  相似文献   

7.
The aim of this study was to present quantitative data on the population dynamics of Chlorella-bearing ciliates (Stentor, Ophrydium) compared to the total zooplankton community in a deep, oligotrophic North Patagonian lake. Mixotrophic and heterotrophic ciliates, rotifers and microcrustaceans, and important ecological parameters were sampled during a 1-year study. The results showed a low biodiversity with only a few dominant species in every zooplankton group. Three mixotrophic ciliates - Stentor araucanus, S. amethystinus and Ophrydium naumanni - were found. They peaked in summer and autumn with maximum values of 152-313 Ind L−1 (Stentor) and 1880 Ind L−1 (Ophrydium). Their contribution to the total ciliate abundance was 16±17% (annual average). Both Stentor species displayed a distinct vertical zonation during the stratification period with peak depth between 10 and 15 m (metalimnion). The contribution to total zooplankton biomass was 59.4% on an annual average (Stentor: 41%, O. naumanni: 18.4%) and 83% during the stratification period. Both abundance and biomass of mixotrophic ciliates correlated strongly with temperature and to a lesser degree with copepods, rotifers and small cladocerans. According to this study mixotrophic ciliates were by far the dominant zooplankton group in Lake Caburgua. We report for the first time the importance of O. naumanni in a deep Chilean North Patagonian lake.  相似文献   

8.
This study is the first to measure the particulate phosphorus, including total inorganic phosphorus (TIP) and organic phosphorus (OP), in size-fractionated atmospheric particles. The results indicate that continental and marine sources are the key controls on the particle-size distribution of phosphorus species. For continental and local anthropogenic sources, both TIP and OP are associated with fine-mode aerosols during the winter and spring, and both are also associated with coarse particles during the summer and autumn. The coarse/fine ratios are low during periods with a non-oceanic source but high at other times, probably because of the biological growing season in the surface waters of the study area. The calculated annual fluxes based on estimates of dual-mode particles are 532±185, 435±172, and 96.8±48.8 μmol m−2 yr−1 for TP, TIP, and OP, respectively. Based on previously published solubility data for particulate phosphorus (34%), we calculated an annual flux of 180±63 μmol m−2 yr−1 for readily soluble particulate phosphorus.  相似文献   

9.
A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 103 cells l−1 to 11.4 × 105 cells l−1) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 103 to 50 × 103 ind m−3). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted.  相似文献   

10.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

11.
12.
The newly introduced polychaete Linopherus canariensis Langerhans, 1881 was found in the Lake of Faro (NE Sicily), during a study comparing the macrobenthos in artificial modules with a neighboring sandy bottom assemblage. Of a total of 4465 specimens, almost 6% showed morphological variation related to branchial turfs and mean body size. The sandy bottom exhibited an average density of 41.86 ind L−1 and a wet biomass of 30.35 mg L−1, whereas the artificial substratum reached levels of 205.29 ind L−1 and 318.44 mg L−1. The highest estimated immigration rate was 3.7 ind L−1 d−1 (5.8 mg L−1 d−1). In the artificial microhabitat, 0.4% of the population showed mid-anterior fragmentation, with anterior- (2%), mid- (<1%) and posterior- (1%) regenerating lineages, which contributed significantly to the dispersion ability of this species. L. canariensis was a selective micro-deposit feeder, even under conditions of reduced sediments. Linopherus was found to be a new potential invader of stressed environments that is probably tied to the import of oysters.  相似文献   

13.
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m−2 d−1 for the more reliable large trap and 149 mg C m−2 d−1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg  C m−2 d−1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m−2 d−1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m−2 d−1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.  相似文献   

14.
During the high water season, the flooding reduces environmental heterogeneity in aquatic ecosystems of the Pantanal wetland. When the water level recedes, lakes and channels are formed as individual systems. Therefore, we expected the spatial heterogeneity during the low water phase resulting in changes on biological communities leading to high phytoplankton abundance, biomass and diversity within and between habitats. To test this hypothesis, we analyzed eight freshwater systems (five oxbow lakes, two channels, and the river) during the low water period. Phytoplankton biomass, abundance, diversity (alpha, beta, gamma) and diversity metrics as richness (species per sample), Shannon diversity (H′) and evenness were measured in all systems along with nutrient concentrations, zooplankton and bacteria abundances. We found 97 species as gamma diversity. The alpha diversity was unexpectedly low in comparison to most other South American floodplain systems (38 species in river, 24 in channels and 29 in lakes). Also, the systems are relatively similar in composition (beta diversity, 28%). Connectivity differences between systems highlighted differences in phytoplankton abundance and biomass (fresh weight) ranging from 1428 ind mL−1 (river) to 3710 ind mL−1 (lakes) and from 0.71 mg L−1 (river) to 2.9 mg L−1 (lakes), respectively. However, our results did not indicate significant differences in phytoplankton species richness between the systems during the low water. Our main conclusions are that local factors may be responsible for changes on phytoplankton community and the time of isolation during the low water phase was not sufficient to promote changes in phytoplankton diversity between the habitats.  相似文献   

15.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

16.
A population of Theodoxus fluviatilis L in the littoral zone of Lake Esrom was investigated from November 1977 to February 1979. The population was sampled every month in the winter period and twice during the rest of the year. Biomass was estimated as ash-free dry weight (AFDW) of the organic matter both of the soft parts of the animal and the shell itself. The relation between AFDW (c) and shell length (l) was log c=2.9509×log (l)−1.7120. The population comprised more than 1 year-class, which could be separated by shell length, by a narrow band on the shells and the growth of algae on the shell. The life cycle lasted years. The oldest animals had a shell length of 7.0-7.5 mm. A few individuals who were estimated to be years had a shell length up to 8.6 mm. Population density varied between 575 and 2115 individuals m−2 on the stony substratum. The average was 1160 individuals m−2. Mortality was low during the summer period. In winter many animals died due to the effect of ice and stormy weather on the stony substratum. Growth of the animals was estimated from the shell length. Maximum growth was observed from May to August with no growth during the winter. Egg capsules were found on the stones all year round. New capsules were found from late May to the middle of November. Most freshly laid capsules were observed in May-June and August-September. Capsules from the late summer hatched in spring and capsules laid in the spring hatched in August-September. The average annual net production for the whole population was estimated by three methods. The Allen curve method gave 1.895 AFDW m−2, the growth-increment method gave 1.784 mg AFDW m−2 and the Hynes method 2.284 mg AFDW m−2. Corresponding estimated P/B ratios were 1.29, 1.30 and 1.57. Annual net-production of the four investigated year-classes was 16 mg AFDW m−2 year−1 for 1975, 224 mg AFDW m−2 year−1 for 1976, 1.258 mg AFDW m−2 year−1 for 1977 and 287 mg AFDW m−2 year−1 for 1978. P/B ratios for the three oldest year-classes were, respectively, 0.32, 0.50 and 1.67. A comparison with other investigations on gastropod life cycles, reproduction and P/B ratios is made and differences discussed. Variations are correlated to temperature, and food quality and quantity.  相似文献   

17.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

18.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

19.
O2, N, P and Si net ecosystem metabolism of the Ría de Ares-Betanzos (NW Iberian upwelling system) was estimated during two 3-wk periods of contrasting summer downwelling and autumn upwelling conditions by means of a transient 2-D kinematic box model. The subtidal circulation was positive in both situations, although it was depressed during downwelling and enhanced during upwelling. Concurrently, the ría was fertilised mainly by shelf bottom waters, which introduced from 69% (under downwelling) to almost 100% (under upwelling) of the limiting N nutrients. The ría was an efficient nutrient trap: about 70% of the N nutrients that entered the embayment were retained under downwelling conditions (average flushing time, 9 days) and about 50% under upwelling conditions (average flushing time 3 days). Although the trapping efficiency was lower, the net ecosystem production (NEP) was much higher under upwelling (from 1.0±0.3 to 1.5±0.4 g C m−2 d−1), than under downwelling favourable winds (from 0.2±0.1 to 0.3±0.1 g C m−2). The stoichiometry of NEP suggests that P and N compounds recycled faster than C compounds, specially in the inner segment of the ría. The net degree of silification was twice in the inner than in the outer segment of the ría.  相似文献   

20.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号