首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

3.
This investigation deals with non‐linear seismic responses of free‐standing rectangular rigid bodies on horizontally and vertically accelerating rigid foundations. The responses are classified into two initial responses and four subsequent responses, accordingly the equations of motion governing the liftoff, slip and liftoff–slip interaction motions and boundary conditions corresponding to commencement and termination of the motions are defined. The time histories of responses presented herein show that the body is sensitive to small changes in the friction coefficient and slenderness, and to the wave properties and intensity of ground motions. Systematic trends are observed: the bodies on the low‐grip foundation avoid overturning while they are allowed to slip regardless of details of ground motions; the long period earthquakes tend to make the body overturn and slip largely. In contrast, the timing when liftoff and slip commences and terminates and their directions do not directly correspond with intensity of ground motions. Moreover, the vertical ground motion adds irregularities on the responses, since it excites or damps the responses. It is concluded that governing equations of motion and boundary conditions in view of discontinuous non‐linear systems are necessary to analyse actual motions of the rectangular rigid bodies subjected to horizontal and vertical ground motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In two companion papers a simplified non‐linear analysis procedure for infilled reinforced concrete frames is introduced. In this paper a simple relation between strength reduction factor, ductility and period (R–µ–T relation) is presented. It is intended to be used for the determination of inelastic displacement ratios and of inelastic spectra in conjunction with idealized elastic spectra. The R–µ–T relation was developed from results of an extensive parametric study employing a SDOF mathematical model composed of structural elements representing the frame and infill. The structural parameters, used in the proposed R–µ–T relation, in addition to the parameters used in a usual (e.g. elasto‐plastic) system, are ductility at the beginning of strength degradation, and the reduction of strength after the failure of the infills. Formulae depend also on the corner periods of the elastic spectrum. The proposed equations were validated by comparing results in terms of the reduction factors, inelastic displacement ratios, and inelastic spectra in the acceleration–displacement format, with those obtained by non‐linear dynamic analyses for three sets of recorded and semi‐artificial ground motions. A new approach was used for generating semi‐artificial ground motions compatible with the target spectrum. This approach preserves the basic characteristics of individual ground motions, whereas the mean spectrum of the whole ground motion set fits the target spectrum excellently. In the parametric study, the R–µ–T relation was determined by assuming a constant reduction factor, while the corresponding ductility was calculated for different ground motions. The mean values proved to be noticeably different from the mean values determined based on a constant ductility approach, while the median values determined by the different procedures were between the two means. The approach employed in the study yields a R–µ–T relation which is conservative both for design and performance assessment (compared with a relation based on median values). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Non‐linear dynamic time‐history analyses conducted as part of a performance‐based seismic design approach often require that the ground motion records are scaled to a specified level of seismic intensity. Recent research has demonstrated that certain ground motion scaling methods can introduce a large scatter in the estimated seismic demands. The resulting demand estimates may be biased, leading to designs with significant uncertainty and unknown margins of safety, unless a relatively large ensemble of ground motion records is used. This paper investigates the effectiveness of seven ground motion scaling methods in reducing the scatter in estimated peak lateral displacement demands. Non‐linear single‐degree‐of‐freedom systems and non‐linear multi‐degree‐of‐freedom systems are considered with different site conditions (site soil profile and epicentral distance) and structural characteristics (yield strength, period, and hysteretic behavior). It is shown that scaling methods that work well for ground motions representative of stiff soil and far‐field conditions lose their effectiveness for soft soil and near‐field conditions for a wide range of structural characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32:1795. The recently developed modal pushover analysis (MPA) has been shown to be a significant improvement over the pushover analysis procedures currently used in structural engineering practice. None of the current invariant force distributions accounts for the contribution of higher modes—higher than the fundamental mode—to the response or for redistribution of inertial forces because of structural yielding. By including the contributions of a sufficient number of modes of vibration (generally two to three), the height‐wise distribution of responses estimated by MPA is generally similar to the ‘exact’ results from non‐linear response history analysis (RHA). Although the results of the previous research were extremely promising, only a few buildings were evaluated. The results presented below evaluate the accuracy of MPA for a wide range of buildings and ground motion ensembles. The selected structures are idealized frames of six different heights: 3, 6, 9, 12, 15, and 18 stories and five strength levels corresponding to SDF‐system ductility factor of 1, 1.5, 2, 4, and 6; each frame is analysed for 20 ground motions. Comparing the median values of storey‐drift demands determined by MPA to those obtained from non‐linear RHA shows that the MPA predicts reasonably well the changing height‐wise variation of demand with building height and SDF‐system ductility factor. Median and dispersion values of the ratios of storey‐drift demands determined by MPA and non‐linear‐RHA procedures were computed to measure the bias and dispersion of MPA estimates with the following results: (1) the bias and dispersion in the MPA procedure tend to increase for longer‐period frames and larger SDF‐system ductility factors (although these trends are not perfect); (2) the bias and dispersion in MPA estimates of seismic demands for inelastic frames are usually larger than for elastic systems; (3) the well‐known response spectrum analysis (RSA), which is equivalent to the MPA for elastic systems, consistently underestimates the response of elastic structures, e.g. up to 18% in the upper‐storey drifts of 18‐storey frames. Finally, the MPA procedure is simplified to facilitate its implementation in engineering practice—where the earthquake hazard is usually defined in terms of a median (or some other percentile) design spectrum for elastic systems—and the accuracy of this simplified procedure is documented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the effect of lead core heating and associated strength deterioration on the seismic response of bridges isolated with lead rubber bearings (LRB) is investigated as a function of the characteristics of the isolator and near fault ground motions with forward rupture directivity effect. Furthermore, the ability of bounding analyses to provide a design envelope for maximum isolator force and maximum isolator displacement is verified. For this purpose, a series of nonlinear dynamic analyses are conducted for LRB isolated bridges where both deteriorating and non‐deteriorating force‐deformation relationship of LRB were employed. The analyses are performed for both simulated and recorded ground motions. It is found that while the temperature rise in the lead core generally increases with increasing magnitude and number of near fault ground motion velocity pulses, it decreases with larger distances from the fault. It is also found that bounding analysis method provides conservative (envelope) estimates of maximum isolator displacement and maximum isolator force for design purposes that fulfill its intended purpose. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The response of a rigid block supported on a horizontally moving foundation through a dry‐friction contact is investigated to near‐fault ground motions. Such motions can be thought of as consisting of a coherent component (‘pulse’) and an incoherent component, which can be described as a band‐limited ‘random noise’. The equation of motion of this strongly nonlinear system is reduced to a normalized form that reveals important parameters of the problem such as the critical acceleration ratio. The response of the sliding block to a set of uniformly processed near‐fault motions, covering a sufficiently wide range of magnitudes, is evaluated numerically for selected discrete values of the acceleration ratio. For each value of the critical acceleration ratio, the numerically computed residual slips are fitted with a Weibull (Gumbel type III) extreme value probability distribution. This allows the establishment of regression equations that describe accurately design sliding curves corresponding to various levels of non‐exceedance probability. The analysis reveals that the coherent component of motion contributes significantly to the response of the sliding block. Furthermore, the relevant acceleration in specifying the critical acceleration ratio is the (normalized) amplitude, αH_pulse, of the pulse and not the (normalized) amplitude of the incoherent component αH. Finally, the incoherent component is described quantitatively in terms of the root‐mean‐square acceleration aRMS, and an attempt is made to understand its influence on the response of the sliding block. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents the effect of isolator and substructure properties as well as the frequency characteristics and intensity of the ground motion on the performance of seismic‐isolated bridges (SIBs) and examines some critical design clauses in the AASHTO Guide Specification for Seismic Isolation Design. For this purpose, a parametric study, involving more than 800 non‐linear time history analyses of simplified structural models representative of typical SIBs, is conducted. The results from the parametric study are then used to derive important design recommendations and conclusions that may be used by bridge engineers to arrive to a more sound and economical design of SIBs. It is found that the SIB response is a function of the peak ground acceleration to peak ground velocity ratio of the ground motion. Thus, the choice of the seismic ground motion according to the characteristics of the bridge site is crucial for a correct design of the SIB. It is also found that the characteristic strength of the isolator may be chosen based on the intensity and frequency characteristics of the ground motion. Furthermore, the isolator post‐elastic stiffness is found to have a notable effect on the response of SIBs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si).  相似文献   

16.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Recent studies have indicated uncertainty about the performance limit states of seismically isolated buildings in very large earthquakes, especially if the isolator displacement demands exceed the seismic gap and induce pounding. Previous research has shown the benefit of providing phased supplemental damping that does not affect the isolation system response in a design event. A phased passive control device, or gap damper, was designed, fabricated, and experimentally evaluated during shake table testing of a quarter scale base‐isolated three‐story steel frame building. Identical input motions were applied to system configurations without a gap damper and with a gap damper, to directly assess the influence of the gap damper on displacement and acceleration demands. The gap damper was observed to reduce displacement demands by up to 15% relative to the isolated system without the gap damper. Superstructure floor accelerations increased substantially because of damper activation, but were limited to a peak of about 1.18 g. The gap damper reduces displacement most effectively if the ground motion contains one or more of the following characteristics: the spectral displacement increases with increasing period near the effective period of the isolation system, the motion is dominated by a single large pulse rather than multiple cycles at a consistent intensity, and the motion has a dominant component aligned with a major axis of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This study develops a straightforward approximate method to estimate inelastic displacement ratio, C1 for base‐isolated structures subjected to near‐fault and far‐fault ground motions. Taking into account the inelastic behavior of isolator and superstructure, a 2 degrees of freedom model is employed. A total of 90 earthquake ground motions are selected and classified into different clusters according to the frequency content features of records represented by the peak ground acceleration to peak ground velocity ratio, Ap/Vp. A parametric study is conducted, and effective factors in C1 (i.e., fundamental vibration period of the superstructure, Ts; postyield stiffness ratio of the superstructure, αs; strength reduction ratio, R; vibration period of the isolator, Tb; strength of the isolator, Q; ratio of superstructure mass to total mass of the system, γm) are recognized. The results indicate that the practical range of C1 values could be expected for base‐isolated structures. Subsequently, effective parameters are included in simple predictive equations. Finally, the accuracy of the proposed approximate equations is evaluated and verified through error measurement, and comparisons are made in the analyses.  相似文献   

20.
For energy‐based seismic design, energy demand in the form of absorbed energy spectra was established by an attenuation relationship. The absorbed energy is proposed for evaluating the energy demand in an inelastic system because the absorbed energy is directly related to the pseudo‐velocity in the elastic case. Based on a total of 273 ground motion records from 15 significant earthquakes in California, an attenuation relationship of the absorbed energy was established from a two‐stage non‐linear regression analysis. This relationship was established for a given earthquake magnitude, source‐to‐site distance, site class, and ductility factor. A similar expression for the normalized absorbed energy was also developed. This study showed that the absorbed energy for near‐field ground motions can be significantly larger than that predicted by the attenuation relationship for normal ground motions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号