首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Sediment cores were collected along ?oodplains in the Navarro River basin of coastal northern California to examine the controls on ?oodplain evolution in a tectonically active setting. Sedimentary strata were subsampled for organic content, bulk density, and grain size measurements. Organic samples were analysed for 14C age, which yielded net‐averaged sedimentation rates for all cores. Overbank deposition rates decreased at all study sites through time and declined in the downstream direction. The ability of intermediary‐order streams to store sediment in ?oodplains decreased the ability of highest‐order streams to record sediment‐pulse events. The effects of anthropogenic disturbance, primarily logging, on long‐term overbank deposition rates were minimal. Climatic variability, by affecting sediment loading in the channel network, is the principal control on ?oodplain evolution through the Holocene. A hypothetical model is proposed to explain overbank deposition rates in the Navarro basin, which may be extrapolated to the northern‐coastal California region during the late Pleistocene and Holocene. The complexities observed in sediment storage and routing in this study imply that caution should be made when extrapolating sediment‐yield measurements obtained at river mouths or coastal shelves to geomorphic events within small, tectonically active basins. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Red Creek, in the Red Desert area of the Great Divide Basin, Wyoming, is an arid-region anastomosing stream. The narrow, deep, and sinuous main channel is flanked by anastomosing flood channels, or anabranches. Most anabranches are initiated at meander bends. The primary mechanism of anabranch initiation is avulsion during overbank floods. Anabranch enlargement occurs by headward erosion. Anabranches act as distributary channels during floods, when water and sediment from overbank flows are transported to and deposited on the floodplain via the anabranches. During periods of low discharges, the anabranches act as tributaries to the main channel, transporting runoff from the floodplain and surrounding hillslopes to the main channel of Red Creek. Aggradation is occurring in the main channel and on the floodplain throughout the study reach. Infilling of the main channel occurs primarily by lateral accretion, while the floodplain accretes vertically through deposition of overbank sediment from the main channel and anabranches. Infilling of the main channel may cause avulsion of the main channel into an anabranch. The abandoned main channel segment may then fill completely or act as an anabranch. Because lateral migration of channels is inhibited by the high cohesion of the silt and clay channel sediment, periodic avulsion is the primary form of lateral mobility in the system.  相似文献   

4.
Geomorphic controls on contaminant distribution along an ephemeral stream   总被引:1,自引:0,他引:1  
Sediment‐borne contamination in a watershed can be highly variable as a result of ?uvial processes operating over a range of time scales. This study presents a detailed analysis of the distribution of one contaminant along an ephemeral stream after 55 years of sediment transport, deposition, and exchange by ?ash ?oods. Wastewater containing plutonium was discharged into the Pueblo Canyon watershed from 1945 until 1964, and plutonium concentrations in ?uvial deposits vary over ?ve orders of magnitude. These variations can be attributed to three primary factors: time since contaminant releases, particle‐size sorting, and mixing of sediment from different sources. The highest concentrations occur in ?ne‐grained sediment deposits near the source that date to the period of ef?uent releases, and concentrations are lower in younger deposits, in coarser‐grained deposits, and in deposits farther downstream. The spatial distribution of plutonium is strongly affected by longitudinal variations in the size of sediment deposits of different age. A major aggradation–degradation cycle in the lower canyon overlapped with the period of active ef?uent releases, and a signi?cant portion of the total plutonium inventory is contained within large coarse‐grained deposits below ?ll terraces that post‐date 1945. The spatial pattern of contamination is thus determined by the speci?c geomorphic history of the watershed, in addition to processes of mixing and sorting during transport that occur in all ?uvial systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low‐angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada.  相似文献   

6.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Field studies suggest that a cohesive floodplain is a necessary condition for meandering in contrast to braided rivers. However, it is only partly understood how the balance between floodplain construction by overbank deposition and removal by bank erosion and chutes leads to meandering. This is needed because only then does a dynamic equilibrium exist and channels maintain meandering with low width–depth ratios. Our objective is to understand how different styles of floodplain formation such as overbank deposition and lateral accretion cause narrower channels and prevent chute cutoffs that lead to meandering. In this study we present two experiments with a self‐forming channel in identical conditions, but to one we added cohesive silt at the upstream boundary. The effect of cohesive silt on bank stability was tested in auxiliary bank erosion experiments and showed that an increase in silt reduced erosion rates by a factor of 2. The experiment without silt developed to a braided river by continuous and extensive shifting of multiple channels. In contrast, in the meandering river silt deposits increased bank stability of the cohesive floodplain and resulted in a reduction of chute cutoffs and increased sinuosity by continuous lateral migration of a single channel. Overbank flow led to deposition of the silt and two styles of cohesive floodplain were observed: first, overbank vertical‐accretion of silt, e.g. levee, overbank sedimentation or splays; and second, lateral point bar accretion with silt on the scrolls and in the swales. The first style led to a reduction in bank erosion, while the second style reduced excavation of chutes. We conclude that sedimentation of fine cohesive material on the floodplain by discharge exceeding bankfull is a necessary condition for meandering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Particulate organic matter (POM) transiting through rivers could be lost to overbank storage, stored in‐channel, added to by erosion or autochthonous production, or turned over to release greenhouse gases to the atmosphere (either while in the water column or while stored in the channel). In the UK, a net loss of POM across catchments has been recorded, and the aim here was to investigate the balances of processes acting on the POM. This study considered records of suspended sediment and POM flux in comparison to stream flow, velocity, stream power, and residence time for the River Trent (English Midlands, 8,231 km2). We show that for the lower two thirds (106 km) of the River Trent, 2% is lost to overbank storage; 10% is lost to the atmosphere in the water column; and 31% is turned over while in temporary storage. Permanent in‐channel storage is negligible, and for the lower course of the river, material stored in‐channel will have a residence time of the order of hundreds of days between the last flood hydrograph of one winter and the first winter storm of the next winter (usually in the same calendar year). When considered at the scale of the UK, 1% POM in transit would be lost to overbank sedimentation; 5% turned over in the water column, and 14% turned over while in temporary storage. In the upper third of the study river channel, there is insufficient stream power to transport sediment and so in‐channel storage or in‐channel turnover over to the atmosphere dominate. The in‐channel processes of the River Trent do not conform to that expected for river channels as the headwaters are not eroding or transporting sediment. Therefore, the source of sediment must be lower down the channel network.  相似文献   

10.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

11.
Due to a lack of data on settling velocities (ws) and grain size distributions (GSDs) in ?oodplain environments, sedimentation models often use calibrated rather than measured parameters. Since the characteristics of suspended matter differ from those of deposited sediment, it is impossible to derive the ws and GSD from the latter. Therefore, one needs to measure in situ suspended sediment concentrations (SSCs), settling velocities, effective grain sizes and sedimentation ?uxes. For this purpose we used the LISST‐ST, a laser particle sizer combined with a settling tube. In 2002 (twice) and 2004, we located the LISST‐ST with an optical backscatter sensor and sediment traps in two ?oodplains in The Netherlands: one along the unembanked IJssel River, another along the embanked Waal River. Measurements revealed that the SSC in the ?oodplains varied in relation to the SSC in the river channel. Smaller ?ocs dominated the SSC, while larger ?ocs dominated the potential sedimentation ?uxes. The in situ GSD in the IJssel ?oodplain was signi?cantly coarser than in the Waal ?oodplain, while the dispersed median grain sizes were equal for both ?oodplains. Therefore, the dispersed median grain size was two to ?ve times smaller than the effective one. The in situ grain size exhibited a signi?cant positive relationship with ws, although the ws for the largest ?ocs showed high variability. Consequently, the variability in sedimentation ?uxes was also large. In the actual sedimentation ?uxes, and hence in sedimentation models, in situ grain sizes up to about 20 µm can be neglected. In ?oodplain sedimentation models the relation between settling velocity and in situ grain size can be used instead of Stokes's law, which is only valid for dispersed grain sizes. These models should also use adequate data on ?ow conditions as input, since these strongly in?uence the suspended sediment characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A palynological approach was used to estimate overbank deposition rates in a forested catchment affected by logging. The palynological approach uses downcore variations in total fossil pollen and fossil pollen assemblage to calculate rates of overbank deposition and has a distinct advantage over radioisotopic approaches in that it is not limited by radioactive decay. Using this approach, we determined that overbank deposition rates increased over 400 per cent within years of logging events and that the increased rates persisted for less than 4 years. After logging‐induced deposition peaked, overbank deposition decreased over 60 per cent relative to the pre‐logging background values. The decreased deposition rates persisted for over 40 years. The immediate effect of logging in this catchment was to induce mass‐wasting events in hollows that produced rapidly travelling sediment pulses. In the subsequent recovery period, reduced sediment loading occurred as a result of a reduction in the volume of sediment available for transport. The reduction in sediment load led to a reduction in overbank deposition rates until subsequent logging disturbances destabilized and emptied other hollows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Long‐term average rates of channel erosion and sediment transport depend on the frequency–magnitude characteristics of ?ood ?ows that exceed an erosion threshold. Using a Poisson model for rainfall and runoff, analytical solutions are developed for average rates of stream incision and sediment transport in the presence of such a threshold. Solutions are derived and numerically tested for three erosion/transport formulas: the Howard–Kerby shear‐stress incision model, the Bridge–Dominic sediment transport model, and a generic shear‐stress sediment transport model. Results imply that non‐linearity resulting from threshold effects can have a ?rst‐order impact on topography and patterns of dynamic response to tectonic and climate forcing. This non‐linearity becomes signi?cant when fewer than about half of ?ood events are capable of detaching rock or sediment. Predicted morphology and uplift‐gradient scaling is more closely consistent with observations and laboratory experiments than conventional slope‐linear or shear‐linear erosion laws. These results imply that particle detachment thresholds are not details that can be conveniently ignored in long‐term landscape evolution models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
During the autumn of 2000, large areas of England and Wales were affected by severe flooding, which caused widespread disruption and significant damage to property. This study attempts to determine the impact of these flood events on contaminated sediment dispersal and deposition in the River Swale catchment, Yorkshire, UK, where lead and zinc were extracted and processed in large quantities during the nineteenth century. Seventy samples of overbank and channel‐edge sediments were collected at 35 sites along the River Swale. Inductively coupled plasma‐mass spectrometry was used to measure contaminant metal concentrations in the 2000–63 µm (sand) and <63 µm (silt and clay) size fractions. In both the channel‐edge and overbank sediments collected from the upper and middle reaches of the River Swale, concentrations of lead, zinc and cadmium were found to exceed MAFF guidelines. Highest concentrations correspond to the input of contaminated material from intensively mined tributaries, and elevated levels can be observed 5–10 km downstream of these inputs. This indicates that the remobilization of contaminated material during major flood events is potentially a serious problem for activities such as agriculture that utilize the Swale floodplain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号