首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Di Wang Tower located in Shenzhen has 79 storeys and is about 325 m high. Field measurements have been conducted to investigate the dynamic characteristics of the super‐tall building. In parallel with the field measurements, seven finite element models have been established to model the multi‐outrigger‐braced tall building and to analyse the effects of various arrangements of outrigger belts and vertical bracings on the dynamic characteristics and responses of the Di Wang Tower under the design wind load and earthquake action. The distributions of shear forces in vertical structural components along the building height are also presented and discussed. The results from detailed modelling of group shear walls with several types of finite elements are addressed and compared to investigate various modelling assumptions. Finally, the performance of the finite element models is evaluated by correlating the natural frequencies and mode shapes from the numerical analysis with the finite element models and the field measurements. The results generated from this study are expected to be of interest to professionals and researchers involved with the design of tall buildings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, we determine an updated finite element model of a reinforced concrete building—which was damaged from shaking during 1994 Northridge earthquake—using forced‐vibration test data and a novel model‐updating technique. Developed and verified in the companion paper (viz. BVLSrc, Earthquake Eng. Struct. Dyn. 2006; this issue), this iterative technique incorporates novel sensitivity‐based relative constraints to avoid ill conditioning that results from spatial incompleteness of measured data. We used frequency response functions and natural frequencies as input for the model‐updating problem. These data were extracted from measurements obtained during a white‐noise excitation applied at the roof of the building using a linear inertial shaker. Flexural stiffness values of properly grouped structural members, modal damping ratios, and translational and rotational mass values were chosen as the updating parameters, so that the converged results had direct physical interpretations, and thus, comparisons with common parameters used in seismic design and evaluation of buildings could be made. We investigated the veracity of the updated finite element model by comparing the predicted and measured dynamic responses under a second, and different type of forced (sine‐sweep) vibration, test. These results indicate that the updated model replicates the dynamic behaviour of the building reasonably well. Furthermore, the updated stiffness factors appear to be well correlated with the observed building damage patterns (i.e. their location and severity). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
模型化方法对钢筋混凝土框架地震反应的影响分析   总被引:1,自引:0,他引:1  
结构非线性动力分析平台OpenSees具备丰富的材料、单元、模型化方法等分析选项和强大的求解功能。在OpenSees平台,对按我国规范设计的八度区二级和九度区一级典型钢筋混凝土框架结构进行了一系列罕遇烈度地震作用下的非线性动力反应分析。通过对分析结果的对比、判断,并结合各种模型化方法对结构地震反应的影响方式进行解释,从顶点侧移、层间侧移角、基底剪力、框架塑性铰分布等方面揭示了不同单元力学模型以及箍筋、板筋对结构整体、局部地震反应的影响规律。  相似文献   

4.
为研究埋地管道在地震激励时管-土相互作用的动力响应问题,研发双向层状剪切连续体模型土箱,建立管G土相互作用有限元分析模型,对横向非一致地震激励下埋地管道地震响应进行数值模拟分析,并与试验结果进行对比.结果表明:数值模拟和振动台试验结果中的管道应变峰值均呈现出沿管道中间大两端小的现象,管道中间应变峰值最小达到两端的1.6倍左右;管道加速度、 土体加速度峰值均随着加载等级的提高而增大,涨幅愈加明显,多峰频率由0~10Hz逐渐向10~ 20Hz频域扩散,管道运动更为自由;土体位移随着加载等级的提高呈现逐级增大的现象,在加载等级增加到0.4g 时位移曲线斜率减小,土体非线性表现明显.数值模拟和振动台试验对比分析的结论表明数值模拟分析的合理性和试验结果的可靠性,为研究横向非一致激励对埋地管道地震响应的影响提供了依据.  相似文献   

5.
为了研究土-结构相互作用对高层建筑地震响应数值模拟的影响.选择一栋具有地震观测记录的高层建筑(结构台阵)作为研究对象.利用Abaqus有限元软件和2009年姚安地震加速度记录,并假定了水平成层和有倾角成层的2种土介质模型.进行土-结构动力反应分析。结果表明:有倾角成层土-桩-结构相互作用模型的计算结果与观测资料相比有明显的放大现象,在NS方向体现的更加明显。这说明,就高层建筑的抗震分析而言,土介质模型对计算结果影响很大,在进行地震作用下土-结构地震响应分析时.土层模型应尽可能与真实土层相符。否则其计算结果会产生较大误差。  相似文献   

6.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
基于有限元法的土坯民房地震响应分析研究   总被引:1,自引:0,他引:1  
基于有限元法研究了土坯民房的地震响应特征,提出了实施土坯民房震害防治的对策性建议。地震动由结构底部向上传播时,低频部分被墙体吸收,水平加速度逐渐增大,揭示了低破坏性地震动损伤土坯民房屋盖系统、高破坏性地震动损坏土坯民房承重构件,进而导致整体结构损毁的动力机制。砖柱(木柱)承重土坯民房的地震响应大于墙体承重土坯民房,后者最大剪应力集中在中间开间的横墙和纵墙的连接处,最大主应力集中在中间开间的横墙上;前者最大剪应力集中在横墙和柱的连接处,最大主应力集中在中间开间的柱体上部。由于2种结构类型土坯民房的薄弱环节有所不同,地震时的致灾原因亦存在差异。  相似文献   

8.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

9.
In the last decade, two tall buildings in Singapore were instrumented with accelerometers and anemometers for the original purpose of identifying the characteristics and effects of wind loading. During the monitoring it became clear that the largest acceleration responses should result from ground motions due to earthquakes having magnitudes between 6 and 8 and epicentres at least 350 km distant. The paper describes the strategy for identifying and capturing the signals from distant tremors, which depends on tracking the RMS response levels in the second vibration mode. Characteristics of some recorded signals are given. While response levels are generally small, the frequency content coincides with the range of fundamental mode frequencies for high rise residential buildings. The validity of using a tall building as a ‘weak‐motion’ seismograph is discussed by considering the mode shape of the building and the measured transfer function between basement and roof responses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   

11.
首先输入多条实际竖向地震记录,用时程分析考察了塔楼高度和连体跨度不同的多个算例。然后将其抽象成塔楼和连体桁架组成的双自由度体系,运用频域分析方法,得到竖向地震作用的变化规律:11随着桁架对塔楼频率比增加,连体地震放大作用越明显;2)当连体对塔楼质量比较小且两者频率比相近1,连体地震反应进一步加强。现行抗震规范的重力系数法提出的大跨度结构竖向地震的实用计算公式对于本文研究结构并不完全适用。提出考虑塔楼和桁架协同地震作用的实用算式,并对一个超高层工程实例进行竖向地震作用分析,与时程分析结果吻合较好。  相似文献   

12.
Finite element analysis is carried out for a building frame supported by laminated rubber bearings to simultaneously investigate global displacement and local stress responses under seismic excitation. The frame members and the rubber bearings are discretized into hexahedral solid elements with more than 3 million degrees of freedom. The material property of rubber is represented by the Ogden model, and the frame is assumed to remain in elastic range. It is shown that the time histories of non‐uniform stress distribution and rocking behavior of the rubber bearings under a frame subjected to seismic excitation can be successfully evaluated, and detailed responses of base and frame can be evaluated through large‐scale finite element analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
建筑结构响应是有效反映结构动力特性的最直接参数,开展结构动力响应实时监测可为结构抗震韧性评估提供准确的地震动输入。本文基于非结构构件损失构建结构抗震韧性评估方法,研究确定位移敏感型和加速度敏感型非结构构件的易损性模型。选择某六层钢筋混凝土框架结构进行实时监测系统建设,基于监测数据开展结构抗震韧性评估。通过构建建筑信息模型(BIM),并在有限元分析软件OpenSees中建立结构弹塑性分析模型,利用实时监测数据实现结构模型更新,直至监测数据与模型分析结果一致。由于实时监测数据峰值较低,结构不会发生塑性变形,因此选择10条双向非脉冲地震动模拟实时监测地震记录。根据层间位移角和楼面加速度分布,开展结构功能损失评估,得到该建筑结构的抗震韧性得分。分析表明,该结构抗震性能较好,在遭受地震破坏后,会发生非结构构件脱落,需要采取有效措施进一步提升建筑抗震韧性水平。  相似文献   

14.
周媛  赵凤新  霍新  张郁山 《中国地震》2006,22(4):418-424
根据同一加速度反应谱拟合了加速度峰值相同、速度峰值相同、位移峰值不同的两组地震动时程。以大跨斜拉桥的三维模型为例,在以上两组时程的激励下,应用有限元立法,对斜拉桥的地震反应进行了分析。计算结果表明:在弹性阶段,地震动位移峰值时斜拉桥的动力响应影响不明显;但当结构进入弹塑性阶段时,在位移峰值较大的一组地震动激励下,桥梁的墩底弯矩和塔顶位移会有更大的响应。  相似文献   

15.
基于结构动力学原理和有限元基本理论,利用SAP2000有限元分析软件,以某框架结构基础隔震楼和与其相近的非隔震楼为研究对象分别建立分析模型,运用动力时程分析法对两种模型进行水平地震反应分析。结果表明:基础隔震楼的水平向地震反应远小于非隔震楼,其上部结构的自振周期明显大于非隔震楼,其层间剪力和基底剪力、楼层相对位移和加速度低于非隔震楼。总体来说,隔震支座可以显著降低水平向地震对于结构的不良反应,值得推广应用。  相似文献   

16.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The time–frequency and the time‐scale analysis methods are used in this paper to identify the dynamic characteristics of non‐linear seismic response of structural systems with single degree of freedom (SDOF) and multiple degrees of freedom (MDOF). Based on the floor acceleration response time histories of bi‐linear SDOF and MDOF structures, the current study compares the results of system identification using the short‐time Fourier transform (STFT), continuous wavelet transform (CWT) and discrete wavelet transform (DWT) methods. The aim is to identify the frequency variations and the time at on‐set of yielding and unloading of a bi‐linear structural system during seismic response. The results demonstrate that the CWT method is better than the STFT method in both time and frequency resolutions, and that the DWT method is the best at detecting the time at on‐set of yielding and unloading. Combining the results of CWT and DWT methods therefore provides accurate information of both frequency variations and yielding time in non‐linear seismic response. To alleviate the problems associated with noise‐contaminated signals, e.g. seismic response data recorded on site, the study suggests that low‐pass filtering be carried out before applying the DWT method to decompose the signals into multiple levels of details. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
To investigate the seismic liquefaction performance of earth dams under earthquake loading, we present a new methodology for evaluating the seismic response of earth dams based on a performance‐based approach and a stochastic vibration method. This study assesses an earthfill dam located in a high‐intensity seismic region of eastern China. The seismic design levels and corresponding performance indexes are selected according to performance‐based criteria and dam seismic codes. Then, nonlinear constitutive models are used to derive an array of deterministic seismic responses of the earth dam by dynamic time series analysis based on a finite element model. Based on these responses, the stochastic seismic responses and dynamic reliability of the earth dam are obtained using the probability density evolution method. Finally, the seismic performance of the earth dam is assessed by the performance‐based and reliability criteria. Our results demonstrate the accuracy of the seismic response analysis of earth dams using the random vibration method. This new method of dynamic performance analysis of earth dams demonstrates that performance‐based criteria and reliability evaluation can provide more objective indices for decision‐making rather than using deterministic seismic acceleration time series as is the current normal practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
余培杰  翟燕 《地震工程学报》2019,41(6):1514-1520
为提升剪力墙抗震性能分析精度,以某高层建筑工程楼体剪力墙为背景,将静力弹塑性分析方法与能量等效准则相结合,确定房屋剪力墙结构沿2个主轴方向的三线性恢复力参数,通过参数构建房屋剪力墙相近层模型。使用三维有限元模型模拟房屋剪力墙工程楼体,并采用相近层模型模拟该楼体三维有限元模型抗震性能的动力时程。结果表明,随着地震水平和楼层的增加,房屋剪力墙层间侧移角包络值和顶点侧移角包络值都在明显增加。设置黏滞流体阻尼器可改善房屋剪力墙受两种地震波的作用,在Ⅸ度罕见地震作用下,房屋剪力墙结构的X向减震效果比Y向好,房屋剪力墙X向和Y向层间位移角的最大减震率分别约为38%与18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号