首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
An increase of the spatial and temporal resolution of snowpack measurements in Alpine or Arctic regions will improve the predictability of flood and avalanche hazards and increase the spatial validity of snowpack simulation models. In the winter season 2009, we installed a ground‐penetrating radar (GPR) system beneath the snowpack to measure snowpack conditions above the antennas. In comparison with modulated frequency systems, GPR systems consist of a much simpler technology, are commercially available and therefore are cheaper. The radar observed the temporal alternation of the snow height over more than 2·5 months. The presented data showed that with moved antennas, it is possible to record the snow height with an uncertainty of less than 8% in comparison with the probed snow depth. Three persistent melt crusts, which formed at the snow surface and were buried by further new snow events, were used as reflecting tracers to follow the snow cover evolution and to determine the strain rates of underlaying layers between adjacent measurements. The height in two‐way travel time of each layer changed over time, which is a cumulative effect of settlement and variation of wave speed in response to densification and liquid water content. The infiltration of liquid water with depth during melt processes was clearly observed during one event. All recorded reflections appeared in concordance with the physical principles (e.g. in phase structure), and one can assume that distinct density steps above a certain threshold result in reflections in the radargram. The accuracy of the used impulse radar system in determining the snow water equivalent is in good agreement with previous studies, which used continuous wave radar systems. The results of this pilot study encourage further investigations with radar measurements using the described test arrangement on a daily basis for continuous destruction‐free monitoring of the snow cover. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A spatially distributed snow model procedure for estimating snow melt, snow water equivalent and snow cover area is formulated and tested with data from the American River basin in California’s Sierra Nevada. An adaptation of the operational National Weather Service snow accumulation and ablation model is used for each model grid cell forced by spatially distributed precipitation and temperature data. The model was implemented with 6-hourly time steps on 1 km2 grid cells for the snow season of 1999–2003. Temperature is spatially interpolated using the prevailing lapse rate and digital terrain elevation data. Precipitation is spatially interpolated using regional climatological analyses obtained from PRISM. Parameters that control snow melt are distributed using ground surface aspect. The model simulations are compared with data from 12 snow-sensors located in the basin and the daily 500-m snow cover extent product from the MODIS/Terra satellite mission. The results show that the distribution of snow pack over the area is generally captured. The snow pack quantity compared to snow gauges is well estimated in high elevations with increasing uncertainty in the snow pack at lower elevations. Sensitivity and uncertainty analyses indicate that the significant input uncertainty for precipitation and temperature is primarily responsible for model errors in lower elevations and near the snow line. The model is suitable for producing spatially resolved realistic snow pack simulations when forced with operationally available observed or predicted data.  相似文献   

3.
This study investigates scaling issues by evaluating snow processes and quantifying bias in snowpack properties across scale in a northern Great Lakes–St. Lawrence forest. Snow depth and density were measured along transects stratified by land cover over the 2015/2016 and 2016/2017 winters. Daily snow depth was measured using a time‐lapse (TL) camera at each transect. Semivariogram analysis of the transect data was conducted, and no autocorrelation was found, indicating little spatial structure along the transects. Pairwise differences in snow depth and snow water equivalent (SWE) between land covers were calculated and compared across scales. Differences in snowpack between forested sites at the TL points corresponded to differences in canopy cover, but this relationship was not evident at the transect scale, indicating a difference in observed process across scale. TL and transect estimates had substantial bias, but consistency in error was observed, which indicates that scaling coefficients may be derived to improve point scale estimates. TL and transect measurements were upscaled to estimate grid scale means. Upscaled estimates were compared and found to be consistent, indicating that appropriately stratified point scale measurements can be used to approximate a grid scale mean when transect data are not available. These findings are important in remote regions such as the study area, where frequent transect data may be difficult to obtain. TL, transect, and upscaled means were compared with modelled depth and SWE. Model comparisons with TL and transect data indicated that bias was dependent on land cover, measurement scale, and seasonality. Modelled means compared well with upscaled estimates, but model SWE was underestimated during spring melt. These findings highlight the importance of understanding the spatial representativeness of in situ measurements and the processes those measurements represent when validating gridded snow products or assimilating data into models.  相似文献   

4.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter‐ and intra‐annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.  相似文献   

6.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr?1 after one diurnal melt‐freeze‐cycle at ambient temperatures of ?2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr?1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (?2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.  相似文献   

8.
We report a methodology for reconstructing the daily snow depth distribution at high spatial resolution in a small Pyrenean catchment using time‐lapse photographs and snow depletion rates derived from an on‐site measuring meteorological station. The results were compared with the observed snow depth distribution, determined on a number of separate occasions using a terrestrial laser scanner (TLS). The time‐lapse photographs were projected onto a digital elevation model of the study site, and converted into snow presence/absence information. The melt‐out date (MOD; first occurrence of melt out after peak snow accumulation) was obtained from the projected photograph series. Commencing the backward reconstruction for each grid cell at the MOD, the method uses simulated snow depth depletion rates using a temperature index approach, which are extrapolated to the grid cells of the domain to arrive at the snow distribution of the previous day. Two variants of the reconstruction techniques were applied (1) using a spatially constant degree day factor (DDF) for calculating the daily expected snow depth depletion rate, and (2) allowing a spatially distributed DDF calculated from two consecutive TLS acquisitions compared to the snow depth depletion rate observed at the meteorological station. Validation revealed that both methods performed well (average R2 = 0.68; standard RMSE = 0.58), with better results obtained from the spatially distributed approach. Nevertheless, the spatially corrected DDF reconstruction, which requires TLS data, suggests that the constant DDF approach is an efficient, and for most applications sufficiently accurate and easily reproducible method. The results highlight the usefulness of time‐lapse photography for not only determining the snow covered area, but also for estimating the spatial distribution of snow depth. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

10.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Spring snow melt run‐off in high latitude and snow‐dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub‐arctic regions have sparse long‐term ground observations and these snow‐dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt‐refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ‘DAV onset’ and ‘melt onset’) and duration for a complex sub‐arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ‘incipient melt’, a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave‐derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1–2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
S. Pohl  P. Marsh 《水文研究》2006,20(8):1773-1792
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

18.
Albert Rango 《水文研究》1993,7(2):121-138
In the last 20 years remote sensing research has led to significant progress in monitoring and measuring certain snow hydrology processes. Snow distribution in a drainage basin can be adequately assessed by visible sensors. Although there are still some interpretation problems, the NOAA-AVHRR sensor can provide frequent views of the areal snow cover in a basin, and snow cover maps are produced operationally by the National Weather Service on about 3000 drainage basins in North America. Measurement of snow accumulation or snow water equivalent with microwave remote sensing has great potential because of the capabilities for depth penetration, all-weather observation and night-time viewing. Several critical areas of research remain, namely, the acquisition of snow grain size information for input to microwave models and improvement in passive microwave resolution from space. Methods that combine both airborne gamma ray and visible satellite remote sensing of the snowpack with field measurements also hold promise for determining areal snow water equivalent. Some remote sensing techniques can also be used to detect different stages of snow metamorphism. Various aspects of snowpack ripening can be detected using microwave and thermal infra-red capabilities. The capabilities for measurement of snow albedo and surface temperature have direct application in both snow metamorphism and snowpack energy balance studies. The potentially most profitable research area here is the study of the bidirectional reflectance distribution function to improve snow albedo measurements. Most of the remote sensing capabilities in snow hydrology have been developed for improving snowmelt-run-off forecasting. Most applications have used the input of snow cover extent to deterministic models, both of the degree day and energy balance types. Snowmelt-run-off forecasts using satellite derived snow cover depletion curves and the models have been successfully made. As the extraction of additional snow cover characteristics becomes possible, remote sensing will have an even greater impact on snow hydrology. Important remote sensing capabilities will become available in the next 20 years through space platform observing systems that will improve our capability to observe the snowpack on an operational basis.  相似文献   

19.
Snowpack water equivalent (SWE) is a key variable for water resource management in snow-dominated catchments. While it is not feasible to quantify SWE at the catchment scale using either field surveys or remotely sensed data, technologies such as airborne LiDAR (light detection and ranging) support the mapping of snow depth at scales relevant to operational water management. To convert snow depth to water equivalent, models have been developed to predict SWE or snowpack density based on snow depth and additional predictor variables. This study builds upon previous models that relate snowpack density to snow depth by including additional predictor variables to account for (1) long-term climatologies that describe the prevailing conditions influencing regional snowpack properties, and (2) the effect of intra- and inter-year variability in meteorological conditions on densification through a cumulative degree-day index derived from North American Regional Reanalysis products. A non-linear model was fit to 114 506 snow survey measurements spanning 41 years from 1166 snow courses across western North America. Under spatial cross-validation, the predicted densities had a root-mean-square error of 47.1 kg m−3, a mean bias of −0.039 kg m−3, and a Nash-Sutcliffe Efficiency of 0.70. The model developed in this study had similar overall performance compared to a similar regression-based model reported in the literature, but had reduced seasonal biases. When applied to predict SWE from simulated depths with random errors consistent with those obtained from LiDAR or Structure-from-Motion, 50% of the SWE estimates for April and May fell within −45 to 49 mm of the observed SWE, representing prediction errors of −15% to 20%.  相似文献   

20.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号