首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to a lack of data on settling velocities (ws) and grain size distributions (GSDs) in ?oodplain environments, sedimentation models often use calibrated rather than measured parameters. Since the characteristics of suspended matter differ from those of deposited sediment, it is impossible to derive the ws and GSD from the latter. Therefore, one needs to measure in situ suspended sediment concentrations (SSCs), settling velocities, effective grain sizes and sedimentation ?uxes. For this purpose we used the LISST‐ST, a laser particle sizer combined with a settling tube. In 2002 (twice) and 2004, we located the LISST‐ST with an optical backscatter sensor and sediment traps in two ?oodplains in The Netherlands: one along the unembanked IJssel River, another along the embanked Waal River. Measurements revealed that the SSC in the ?oodplains varied in relation to the SSC in the river channel. Smaller ?ocs dominated the SSC, while larger ?ocs dominated the potential sedimentation ?uxes. The in situ GSD in the IJssel ?oodplain was signi?cantly coarser than in the Waal ?oodplain, while the dispersed median grain sizes were equal for both ?oodplains. Therefore, the dispersed median grain size was two to ?ve times smaller than the effective one. The in situ grain size exhibited a signi?cant positive relationship with ws, although the ws for the largest ?ocs showed high variability. Consequently, the variability in sedimentation ?uxes was also large. In the actual sedimentation ?uxes, and hence in sedimentation models, in situ grain sizes up to about 20 µm can be neglected. In ?oodplain sedimentation models the relation between settling velocity and in situ grain size can be used instead of Stokes's law, which is only valid for dispersed grain sizes. These models should also use adequate data on ?ow conditions as input, since these strongly in?uence the suspended sediment characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Most entrained estuarine sediment mass occurs as flocs. Parameterising flocculation has proven difficult as it is a dynamically active process dependent on a set of complex interactions between the sediment, fluid and the flow. However the natural variability in an estuary makes it difficult to study the factors that influence the behaviour of flocculation in a systematic manner. This paper presents preliminary results from a laboratory study that examined how floc properties of a natural estuarine mud from the Medway (UK), evolved in response to varying levels of suspended sediment concentration and induced turbulent shearing. The experiments utilised the LabSFLOC floc video camera system, in combination with an annular mini-flume to shear the suspended sediment slurries. The flows created in the mini-flume produced average shear stresses, at the floc sampling height, ranging from 0.01 N m−2 to a peak of 1.03 N m−2. Nominal suspended particulate matter concentrations of 100, 600 and 2000 mg l−1 were introduced into the flume. The experimental runs produced individual flocs ranging in size from microflocs of 22.2 μm to macroflocs 583.7 μm in diameter. Average settling velocities ranged from 0.01 to 26.1 mm s−1, whilst floc effective densities varied from 3.5 up to 2000 kg m−3. Low concentration and low shear stress were seen to produce an even distribution of floc mass between the macrofloc (>160 μm) and microfloc (<160 μm) fractions. As both concentration and stress rose, the proportion of macrofloc mass increased, until they represented over 80% of the suspended matter. A maximum average macrofloc settling velocity of 3.3 mm s−1 was attained at a shear stress of 0.45 N m−2. Peak turbulence conditions resulted in deflocculation, limiting the macrofloc fall velocity to only 1.1 mm s−1 and placing over 60% of the mass in the microfloc size range. A statistical analysis of the data suggests that the combined influence of both suspended concentration and turbulent shear controls the settling velocity of the fragile, low density macroflocs.  相似文献   

3.
Flocculation settling characteristics of mud: sand mixtures   总被引:2,自引:1,他引:1  
When natural muds become mixed with sandy sediments in estuaries, it has a direct effect on the flocculation process and resultant sediment transport regime. Much research has been completed on the erosion and consolidation of mud/sand mixtures, but very little is known quantitatively about how mixed sediments interact whilst in suspension, particularly in terms of flocculation. This paper presents the settling velocity findings from a recent laboratory study which examined the flocculation dynamics for three different mud/sand mixtures at different concentrations (0.2–5 g.l?1) and turbulent shear stresses (0.06–0.9 Pa) in a mini-annular flume. The low intrusive video-based Laboratory Spectral Flocculation Characteristics instrument was used to determine floc/aggregate properties (e.g., size, settling velocity, density and mass) for each population. Settling data was assessed in terms of macrofloc (>160 μm) and microfloc (<160 μm) settling parameters: Wsmacro and Wsmicro, respectively. For pure muds, the macroflocs are regarded as the most dominant contributors to the total depositional flux. The parameterised settling data indicates that by adding more sand to a mud/sand mixture, the fall velocity of the macrofloc fraction slows and the settling velocity of microflocs quickens. Generally, a mainly sandy suspension comprising 25% mud and 75% sand (25M:75S), will produce resultant Wsmacro which are slower than Wsmicro. The quickest Wsmicro appears to consistently occur at a higher level of turbulent shear stress (τ?~?0.6 Pa) than both the macrofloc and microfloc fractions from suspensions of pure natural muds. Flocculation within a more cohesively dominant muddy-sand suspension (i.e., 75M:25S) produced macroflocs which fell at similar speeds (±10%) to pure mud suspensions at both low (200 mg l?1) and intermediate (1 g?l?1) concentrations at all shear stress increments. Also, low sand content suspensions produced Wsmacro values that were faster than the Wsmicro rates. In summary, the experimental results of the macrofloc and microfloc settling velocities have demonstrated that flocculation is an extremely important factor with regards to the depositional behaviour of mud/sand mixtures, and these factors must be considered when modelling mixed sediment transport in the estuarine or marine environment.  相似文献   

4.
5.
Field measurements have been carried out to obtain more quantitative knowledge on the longitudinal distribution of the fine-grained sediment dynamics in the Ems Estuary. Both the short-term (time scale < tidal period) and the long-term (tidally averaged) fine-grained sediment transports have been investigated. It is shown that the short-term erosion/sedimentation cycles are most characteristic and are the building blocks for the ultimate long-term transports. Herein, the macroflocs play a key role. The macroflocs had sizes in the range of 200 to 700?μm, sometimes more than 1?mm, and survived high current velocities. The settling velocities were in the range of 0.5 to 8?mm/s. Turbulence intensities and suspended sediment concentration are of utmost importance for the settling properties of the sediment, but the “flocculation ability??of the suspended sediment is shown to be of equal importance. The suspended sediment concentration is only important at low levels of turbulence. At high levels of turbulence, the limiting properties of turbulence dominate. It is demonstrated that the surface properties of the suspended sediment particles are of prime importance for the flocculation ability of the water/sediment mixture, as do the sizes of the resuspended microflocs. Special attention is given to the longitudinal distribution of the sizes and settling properties of the macroflocs as well as of the sediment transports. The flocculation ability was shown to vary almost one order of magnitude along the estuary. These higher flocculation abilities in the direction of higher salinities are responsible for the increase of the sizes of the macroflocs in the seaward direction. Therefore, notwithstanding the low suspended sediment concentrations at the seaward boundary of the Ems Estuary, large macroflocs and corresponding high settling velocities were observed in this area. It explains that, in the Ems Estuary, no distinct effect was determined of the suspended sediment concentration on the settling properties of the suspended macroflocs.  相似文献   

6.
This study investigates the consequences of flocculation for sediment flux in glacier‐fed Lillooet Lake, British Columbia based on density, fractal dimension, in situ profiles of sediment concentration and size distribution, and settling velocity equations presented in the literature. Sediment flux attributed to macroflocs during the late spring and summer accounts for a significant portion of sediment flux in the lake, equivalent to at least one‐quarter of the average annual sediment flux. Fine sediment is reaching the lake floor faster in flocs than occurs if settling as individual grains. This flux varies both spatially and temporally over the observation period, suggesting a link between deposition via flocculation and the properties of bottom sediments. Macrofloc flux increased through June, reached a peak during July, and then declined into August. Macrofloc flux was greatest in the distal end of the first basin, approximately 10 km from the point of inflow. Relatively high excess densities (~0·1 g cm–3 at 500 µm) for flocs in situ are consistent with a composition dominated by inorganic primary particles. Microlaminations within Lillooet Lake varves have been linked by earlier workers to discharge events, and the action of turbidity currents, emanating from the Lillooet River. While turbidity currents undoubtedly occur in Lillooet Lake, these results demonstrate flocculation as an adjunct process linking discharge, lake level, macrofloc flux, bulk density and microlaminations. In situ measurements of sediment settling velocity in glacier‐fed lakes are required to better constrain flux rates, and permit comparison between flocculation in lacustrine environments with existing studies of estuarine, marine and fluvial flocculation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Laboratory experiments were performed with rain of uniform drop size (2·7 mm, 5·1 mm) impacting flows over non‐cohesive beds of uniform sized sand (0·11–0·9 mm) and coal (0·2–0·9 mm) particles with flow velocities (20 mm s?1, 40 mm s?1) that were insufficient for the flow to entrain the particles without the aid of raindrop impact. Measurement of particle travel distance under rain made up of 2·7 mm drops confirmed a theoretical relationship between settling velocity and the distance particles travel after being disturbed by drop impact. Although, in theory, a relationship between settling velocity and particle travel distance exists, settling velocity by itself was unable to account for the effect of changes in both particle size and density on sediment discharge from beds of uniform non‐cohesive material. Particle density was also a factor. Further study of how particle characteristics influence sediment discharge will aid modelling of the impact of the soil in process‐based models of erosion by rain‐impacted flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The morphodynamics of the anastomosing channel system of upper Columbia River in southeastern British Columbia, Canada, is examined using an adaptation of conventional hydraulic geometry termed ‘interchannel hydraulic geometry’. Interchannel hydraulic geometry has some of the characteristics of downstream hydraulic geometry but differs in that it describes the general bankfull channel form and hydraulics of primary and secondary channels in the anastomosing channel system. Interchannel hydraulic geometry generalizes these relationships and as such becomes a model of the geomorphology of channel division and combination. Interchannel hydraulic geometry of upper Columbia River, based on ?eld measurements of ?ow velocity and channel form at 16 test sections, is described well by simple power functions: wbf = 3·24Qbf0·64; dbf = 1·04Qbf0·19; vbf = 0·30Qbf0·17. These results, with other related measurements of ?ow resistance, imply that channel splitting leads to hydraulic inef?ciency (higher ?ow resistance) on the anastomosing Columbia River. Because these ?ndings differ from those reported in studies elsewhere, we conclude that hydraulic ef?ciency does not provide a general explanation for anabranching in river channels. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The study concerns sand deposition within a regular array of vertical cylinders placed in the path of a sand-laden wind. Twelve wind tunnel experiments using three preselected shear velocities (28·78, 32·86 and 45·1 cm s−1), with associated rates of sand feed (0·3, 2·0 and 3·8 g cm−1 s−1), and four roughness element concentrations (λ = 0·046, 0·092, 0·184 and 0·369) were carried out to evaluate the factors that affect sand deposition and sand flux in the presence of immobile rough elements. The measurements showed that as the concentration of non-erodible elements increased, the percentage reduction in the initial sand flux increased and a particularly sharp reduction occurred when λ ≥ 0·18. The pattern of reduction was found to be qred = qeq (d/H) [Δy/(Δyd)](0·68 −3·5λ) when λ ≤ 0·18, and qred = qeq(d/H)[Δy/(Δyd)](0·025) when λ > 0·18, where qeq is the equilibrium rate of sand transport arriving at the best bed, d is the diameter of the cylinder, H is the height of the cylinder, and Δy is the width of unit area associated with a cylinder. The experimenal results also showed that the sand flux downstream of the array started to increase immediately upon the commencement of burial of the array's cylinders. Thus the sand deposition and sand flux along an array consisting of regularly distributed, non-erodible elements were shown to be neither uniform nor steady. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Estuarine and coastal sediment transport is characterised by the transport of both sand-sized particles (of diameter greater than 63?μm) and muddy fine-grained sediments (silt, diameter less than 63?μm; clay, diameter less than 2?μm). These fractions are traditionally considered as non-cohesive and cohesive, respectively, because of the negligible physico-chemical attraction that occurs between sand grains. However, the flocculation of sediment particles is not only caused by physico-chemical attraction. Cohesivity of sediment is also caused by biology, in particular the sticky extra-cellular polymeric substances secreted by diatoms, and the effect of biology in binding sediment particles can be much larger than that of physico-chemical attraction. As demonstrated by Manning (2008) and further expanded in part 1 of this paper (Manning et al., submitted), the greater binding effect of biology allows sand particles to flocculate with mud. In many estuaries, both the sand and fine sediment fractions are transported in significant quantities. Many of the more common sediment transport modelling suites now have the capability to combine mud and sand transport. However, in all of these modelling approaches, the modelling of mixed sediment transport has still essentially separated the modelling of sand and mud fractions assuming that these different fractions do not interact except at the bed. However, the use of in situ video techniques has greatly enhanced the accuracy and reliability of settling velocity measurements and has led to a re-appraisal of this widely held assumption. Measurements of settling velocity in mixed sands presented by Manning et al. (2009) have shown strong evidence for the flocculation of mixed sediments, whilst the greater understanding of the role of biology in flocculation has identified mechanisms by which this mud-sand flocculation can occur. In the first part of this paper (Manning et al., submitted), the development of an empirical flocculation model is described which represents the interaction between sand and mud particles in the flocculation process. Measurements of the settling velocity of varying mud-sand mixtures are described, and empirical algorithms governing the variation of settling velocity with turbulence, suspended sediment concentration and mud-sand content are derived. The second part of this paper continues the theme of examination of the effects of mud-sand interaction on flocculation. A 1DV mixed transport model is developed and used to reproduce the vertical transport of mixed sediment fractions. The 1DV model is used to reproduce the measured settling velocities in the laboratory experiments described in the part 1 paper and also to reproduce measurements of concentration of mixed sediments in the Outer Thames. In both modelling exercises, the model is run using the algorithms developed in part 1 and repeated using an assumption of no interaction between mud and sand in the flocculation process. The results of the modelling show a significant improvement in the ability of the 1DV to reproduce the observed sediment behaviour when the empirical equations are used. This represents further strong evidence of the interaction between sand and mud in the flocculation process.  相似文献   

13.
The fractal dimension of an individual floc is a measure of the complexity of its external shape. Fractal dimensions can also be used to characterize floc populations, in which case the fractal dimension indicates how the shape of the smaller flocs relates to that of the larger flocs. The objective of this study is to compare the fractal dimensions of floc populations with those of individual flocs, and to evaluate how well both indicate contributions of sediment sources and reflect the nature and extent of flocculation in streams. Suspended solids were collected prior to and during snowmelt at upstream and downstream sites in two southern Ontario streams with contrasting riparian zones. An image analysis system was used to determine area, longest axis and perimeter of flocs. The area–perimeter relationship was used to calculate the fractal dimension, D, that characterizes the floc population. For each sample, the fractal dimension, Di , of the 28 to 30 largest individual flocs was determined from the perimeter–step‐length relationship. Prior to snowmelt, the mean value of Di ranged from 1·19 (Cedar Creek, downstream) to 1·22 (Strawberry Creek, upstream and downstream). A comparison of the means using t‐tests indicates that most samples on this day had comparable mean values of Di . During snowmelt, there was no significant change in the mean value of Di at the Cedar Creek sites. In contrast, for Strawberry Creek the mean value of Di at both sites increased significantly, from 1·22 prior to snowmelt to 1·34 during snowmelt. This increase reflects the contribution of sediment‐laden overland flow to the sediment load. At three of the sampling sites, the increase in fractal dimensions was accompanied by a decreases in effective particle size, which can be explained by an increase in bed shear stress. A comparison of fractal dimensions of individual flocs in a sample with the fractal dimensions of the floc populations indicates that both fractal dimensions provide similar information about the temporal changes in sediment source contributions, about the contrasting effectiveness of the riparian buffer zones in the two basins, and about the hydraulic conditions in the streams. Nevertheless, determining the individual fractal dimensions of a set of large flocs in a sample is very time consuming. Using fractal dimensions of floc populations is therefore the preferred method to characterize suspended matter. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Flume experiments were conducted using four different gravel beds (D50 + 12–39 mm) and a range of marked particles (10–65 mm). The shear stresses were evaluated from friction velocities, when initial movement of marked particles occurred. Two kinds of equations were produced: first for the threshold of initial movement, and second for generalized movement. Equations of the type 0c + a(Di/D50)b, as proposed by Andrews (1983) are applicable even if the material is relatively well sorted. However, the values of a and b are lower (respectively 0·050 and -0·70) for initial movement. Generalized movement requires a higher shear stress (a + 0·068 and b + -0·80). D90 of the bed material and y0 (the bed roughness parameter) were also used as reference values in place of D50. They produced lower values than in natural streams, mainly owing to the fact that the material used in the flume is better sorted: clusters are less well developed and the bed roughness is lower.  相似文献   

15.
Partitioning resistance to overland flow on rough mobile beds   总被引:1,自引:0,他引:1  
For overland flows transporting predominantly bed load over rough mobile beds without rainfall, resistance to flow f may be divided into four components: surface resistance fs, form resistance ff, wave resistance fw, and bed‐mobility resistance fm. In this study it is assumed that f = fs + ff + fw + fm, and an equation is developed for each component. The equations for fs and ff are borrowed from the literature, while those for fw and fm are developed from two series of flume experiments in which the beds are covered with various concentrations of large‐scale roughness elements. The first series consists of 65 experiments on fixed beds, while the second series contains 194 experiments on mobile beds. All experiments were performed on the same slope (S = 0·114) and with the same size of sediment (D = 0·00074 m). The equations for fw and fm are derived by a combination of dimensional analysis and regression analysis. The analyses reveal that the major controls of fw and fm are the Froude number F and the concentration of the roughness elements Cr. When the equations for fw and fm are summed, the Cr terms cancel out, leaving fw+m = 0·63F?2. An equation is developed that predicts total f, and the contributions of fs, ff, fw and fm to f are computed from the series 1 and 2 experiments. An analysis of the first series reveals that in clear‐water flows over fixed beds, fw accounts for 52 per cent of f. A similar analysis of the second series indicates that in sediment‐laden flows over mobile beds fw comprises 37 per cent and fm 32 per cent of f, so that together fw and fm account for almost 70 per cent of f. Finally, regression analyses indicate that where F > 0·5, fw and fm each vary with F?2 and fw/fm = 1·18. The equation developed here for predicting total f applies only to the range of hydraulic, sediment, and bed roughness conditions represented by the experimental data. With additional data from a broader range of conditions the same methodology as employed here could be used to develop a more general equation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Andrew Lane 《Ocean Dynamics》2005,55(5-6):541-548
The development and application of a Lagrangian particle-tracking model to simulate sediment transport in the Mersey Estuary (UK) is described. Each of the particles (up to a million in total) is advected horizontally by the 3-D tidal currents. Related vertical movements are: (1) downwards by settlement at a prescribed velocity w s and (2) both upwards and downwards by a distance related to the vertical eddy diffusivity. In a novel departure from traditional practice, where initial distributions of surficial sediments are specified, all particles are introduced at the seaward boundary of the model. Provenance studies indicate surficial sediments are overwhelmingly of marine origin. For the predominant fine sediments, ‘cyclical convergence’ in suspended sediment concentrations is approximated after about two spring-neap tidal cycles. Comparisons are shown between the suspended sediment concentrations and net deposition rates computed by this model against observed values and earlier computations utilising both 1-D and 3-D Eulerian models. While all of these results are in broad agreement, the flexibility of the Lagrangian approach for simulating flocculation, consolidation and mixed sediments illustrates its future potential.  相似文献   

17.
In order to investigate the rate of dissolution of gypsiferous rocks under natural conditions in streams of the Ebro river basin, 55 dissolution trials were carried out with spheres of alabastrine gypsum placed in flowing water. Experimental conditions involved flow velocities between 0·3 and 1·2 m s?1, electrical conductivities between 0·3 and 1·9 dS m?1, and the saturation indices of gypsum between ?2·1 and ?0·33. Mean values of dissolution rate obtained vary from 104 to 226 gm?2 h?1. This loss of mass corresponded to a volume of gypsum of between 393 and 853mmm?2 year?1. The factors most affecting the dissolution of gypsum are in descending order of importance: flow velocity > electrical conductivity > gypsum saturation.  相似文献   

18.
Prediction of concentrated flow width in ephemeral gully channels   总被引:3,自引:0,他引:3  
Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s?1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s?1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10?4m3s?1 < Q < 0·1 m3s?1). Comparing WQ relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed WQ equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the WQ approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Flocculation has an important impact on particle trapping in estuarine turbidity maximum (ETM) through associated increases in particle settling velocity. To quantify the importance of the flocculation processes, a size-resolved flocculation model is implemented into an ocean circulation model to simulate fine-grained particle trapping in an ETM. The model resolves the particle size from robust small flocs, about 30 μm, to very large flocs, over 1000 μm. An idealized two-dimensional model study is performed to simulate along-channel variations of suspended sediment concentrations driven by gravitational circulation and tidal currents. The results indicate that the flocculation processes play a key role in generating strong tidal asymmetrical variations in suspended sediment concentration and particle trapping. Comparison with observations suggests that the flocculation model produces realistic characteristics of an ETM.  相似文献   

20.
Various physical and biological properties affect solute transport patterns in streams. We measured hydraulic characteristics of Payne Creek, a low‐gradient upper Coastal Plain stream, using tracer experiments and parameter estimation with OTIS‐P (one‐dimensional transport with inflow and storage with parameter optimization). The primary objective of this study was to estimate the effects of varying discharge, season, and litter accumulation on hydraulic parameters. Channel area A ranged from 0·081 to 0·371 m2 and transient storage area As ranged from 0·027 to 0·111 m2. Dispersion D ranged from 1·5 to 11·1 m2 min−1 and exchange coefficient α ranged from 0·009 to 0·038 min−1. Channel area and dispersion were positively correlated to discharge Q, whereas storage area and exchange coefficient were not. Relative storage size As/A ranged from 0·17 to 0·59, and was higher during fall than other seasons under a similar Q. The fraction of median travel time due to transient storage ranged from 8·8 to 34·5% and was significantly correlated with Q through a negative power function. Both metrics indicated that transient storage was a significant component affecting solute transport in Payne Creek, especially during the fall. Comparison between the measured channel area Ac and A suggested that surface storage was dominant in Payne Creek. During fall, accumulation of leaf litter resulted in larger A and As and lower velocity and D than during other seasons with similar discharge. Seasonal changes in discharge and organic matter accumulation, and dynamic channel morphology affected the magnitude of transient storage and overall hydraulic characteristics of Payne Creek. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号